已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery

多光谱图像 杂草 精准农业 遥感 全色胶片 杂草防治 卷积神经网络 人工智能 计算机科学 环境科学 农学 生物 农业 生态学 地理
作者
Fulin Xia,Longzhe Quan,Zhaoxia Lou,Deng Sun,Hailong Li,Xiaolan Lv
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13 被引量:9
标识
DOI:10.3389/fpls.2022.938604
摘要

Atrazine is one of the most widely used herbicides in weed management. However, the widespread use of atrazine has concurrently accelerated the evolution of weed resistance mechanisms. Resistant weeds were identified early to contribute to crop protection in precision agriculture before visible symptoms of atrazine application to weeds in actual field environments. New developments in unmanned aerial vehicle (UAV) platforms and sensor technologies promote cost-effective data collection by collecting multi-modal data at very high spatial and spectral resolution. In this study, we obtained multispectral and RGB images using UAVs, increased available information with the help of image fusion technology, and developed a weed spectral resistance index, WSRI = (RE-R)/(RE-B), based on the difference between susceptible and resistant weed biotypes. A deep convolutional neural network (DCNN) was applied to evaluate the potential for identifying resistant weeds in the field. Comparing the WSRI introduced in this study with previously published vegetation indices (VIs) shows that the WSRI is better at classifying susceptible and resistant weed biotypes. Fusing multispectral and RGB images improved the resistance identification accuracy, and the DCNN achieved high field accuracies of 81.1% for barnyardgrass and 92.4% for velvetleaf. Time series and weed density influenced the study of weed resistance, with 4 days after application (4DAA) identified as a watershed timeframe in the study of weed resistance, while different weed densities resulted in changes in classification accuracy. Multispectral and deep learning proved to be effective phenotypic techniques that can thoroughly analyze weed resistance dynamic response and provide valuable methods for high-throughput phenotyping and accurate field management of resistant weeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助漂亮的鸡采纳,获得10
2秒前
fancy完成签到 ,获得积分10
3秒前
3秒前
橙子fy16_发布了新的文献求助10
5秒前
领导范儿应助老白非采纳,获得10
8秒前
SciGPT应助Clover采纳,获得10
10秒前
11秒前
14秒前
淡然向松完成签到 ,获得积分10
14秒前
秋2发布了新的文献求助10
15秒前
16秒前
瘦瘦冬寒完成签到 ,获得积分10
16秒前
17秒前
19秒前
行走家发布了新的文献求助10
19秒前
他也蓝发布了新的文献求助10
21秒前
22秒前
jiaqi发布了新的文献求助30
23秒前
852应助笨笨小熊猫采纳,获得10
23秒前
24秒前
24秒前
壮观梦易发布了新的文献求助10
24秒前
25秒前
26秒前
55完成签到 ,获得积分10
27秒前
强无敌发布了新的文献求助10
28秒前
漂亮的鸡发布了新的文献求助10
29秒前
29秒前
我我我发布了新的文献求助10
30秒前
周凡淇发布了新的文献求助10
30秒前
30秒前
mynuongga完成签到,获得积分10
30秒前
喂_你好发布了新的文献求助10
31秒前
行走家完成签到,获得积分10
33秒前
人类后腿发布了新的文献求助20
33秒前
子阅完成签到 ,获得积分10
34秒前
34秒前
华仔应助风中的糖豆采纳,获得10
38秒前
花椒鱼完成签到 ,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353363
求助须知:如何正确求助?哪些是违规求助? 2977981
关于积分的说明 8683154
捐赠科研通 2659256
什么是DOI,文献DOI怎么找? 1456109
科研通“疑难数据库(出版商)”最低求助积分说明 674278
邀请新用户注册赠送积分活动 664978