A Multi-stage Machine Learning Methodology for Health Monitoring of Largely Unobserved Structures Under Varying Environmental Conditions

马氏距离 结构健康监测 计算机科学 桁架桥 自回归模型 人工神经网络 可靠性(半导体) 人工智能 特征(语言学) 机器学习 数据挖掘 模式识别(心理学) 工程类 统计 桁架 结构工程 数学 哲学 功率(物理) 物理 量子力学 语言学
作者
Alireza Entezami,Stefano Mariani,Hashem Shariatmadar
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 297-307
标识
DOI:10.1007/978-3-031-07258-1_31
摘要

Structural Health Monitoring (SHM) via data-driven techniques can be based upon vibrations acquired by sensor networks. However, technical and economic reasons may prevent the deployment of pervasive sensor networks over civil structures, thus limiting their reliability in terms of damage detection. Moreover, the effects of environmental (and operational) variability may lead to false alarms. To address these challenges, a multi-stage machine learning (ML) method is here proposed by exploiting autoregressive (AR) spectra as damage-sensitive features. The proposed method is framed as follows: (i) computing the distances between different sets of the AR spectra via the log-spectral distance (LSD), providing also the training and test datasets; (ii) removing the potential environmental variability by an auto-associative artificial neural network (AANN), to set normalized training and test datasets; (iii) running a statistical analysis via the Mahalanobis-squared distance (MSD) for early damage detection. The effectiveness of the proposed approach is assessed in the case of limited vibration data for the laboratory truss structure known as the Wooden Bridge. Comparative studies show that the AR spectrum is a reliable feature, sensitive to damage even in the presence of a limited number of sensors in the network; additionally, the multi-stage ML methodology succeeds in early detecting damage under environmental variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
506407完成签到,获得积分10
1秒前
土拨鼠完成签到 ,获得积分0
2秒前
liukanhai完成签到,获得积分10
5秒前
豆⑧完成签到,获得积分10
9秒前
不劳而获完成签到 ,获得积分10
14秒前
JUN完成签到,获得积分10
15秒前
shacodow完成签到,获得积分10
16秒前
ll完成签到,获得积分10
18秒前
瞿人雄完成签到,获得积分10
19秒前
龙弟弟完成签到 ,获得积分10
20秒前
没心没肺完成签到,获得积分10
21秒前
学术霸王完成签到,获得积分10
22秒前
1002SHIB完成签到,获得积分10
23秒前
nihaolaojiu完成签到,获得积分10
23秒前
sheetung完成签到,获得积分10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
48秒前
路漫漫其修远兮完成签到 ,获得积分10
49秒前
月下荷花完成签到 ,获得积分10
49秒前
小山己几完成签到,获得积分10
55秒前
李音完成签到 ,获得积分10
1分钟前
七厘米发布了新的文献求助10
1分钟前
哥哥发布了新的文献求助10
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
2分钟前
Neko完成签到,获得积分10
2分钟前
fbwg完成签到,获得积分10
2分钟前
Johan完成签到 ,获得积分10
2分钟前
松柏完成签到 ,获得积分10
2分钟前
Song完成签到 ,获得积分10
2分钟前
孙朱珠完成签到,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370