A Multi-stage Machine Learning Methodology for Health Monitoring of Largely Unobserved Structures Under Varying Environmental Conditions

马氏距离 结构健康监测 计算机科学 桁架桥 自回归模型 人工神经网络 可靠性(半导体) 人工智能 特征(语言学) 机器学习 数据挖掘 模式识别(心理学) 工程类 统计 桁架 结构工程 数学 哲学 功率(物理) 物理 量子力学 语言学
作者
Alireza Entezami,Stefano Mariani,Hashem Shariatmadar
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 297-307
标识
DOI:10.1007/978-3-031-07258-1_31
摘要

Structural Health Monitoring (SHM) via data-driven techniques can be based upon vibrations acquired by sensor networks. However, technical and economic reasons may prevent the deployment of pervasive sensor networks over civil structures, thus limiting their reliability in terms of damage detection. Moreover, the effects of environmental (and operational) variability may lead to false alarms. To address these challenges, a multi-stage machine learning (ML) method is here proposed by exploiting autoregressive (AR) spectra as damage-sensitive features. The proposed method is framed as follows: (i) computing the distances between different sets of the AR spectra via the log-spectral distance (LSD), providing also the training and test datasets; (ii) removing the potential environmental variability by an auto-associative artificial neural network (AANN), to set normalized training and test datasets; (iii) running a statistical analysis via the Mahalanobis-squared distance (MSD) for early damage detection. The effectiveness of the proposed approach is assessed in the case of limited vibration data for the laboratory truss structure known as the Wooden Bridge. Comparative studies show that the AR spectrum is a reliable feature, sensitive to damage even in the presence of a limited number of sensors in the network; additionally, the multi-stage ML methodology succeeds in early detecting damage under environmental variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8Raw2Z发布了新的文献求助10
1秒前
Snow完成签到,获得积分10
2秒前
weadu完成签到,获得积分10
3秒前
JamesPei应助ran采纳,获得10
3秒前
3秒前
3秒前
asdfg123发布了新的文献求助10
4秒前
乐乐应助恩彧采纳,获得10
4秒前
Owen应助pups采纳,获得10
4秒前
华仔应助SYanan采纳,获得30
4秒前
zzz发布了新的文献求助10
5秒前
从容的梦琪完成签到,获得积分20
5秒前
烟花应助Aamidtou采纳,获得10
6秒前
SilongZhao完成签到,获得积分10
6秒前
哈喽啊关注了科研通微信公众号
6秒前
不吃香菜完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
脑洞疼应助Chiara采纳,获得10
10秒前
英姑应助东方楚才采纳,获得10
10秒前
CipherSage应助zjcomposite采纳,获得10
10秒前
默默语薇发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
pignai发布了新的文献求助30
12秒前
12秒前
刘卿婷完成签到,获得积分10
12秒前
开瑾发布了新的文献求助10
13秒前
Owen应助ZeSheng采纳,获得10
13秒前
稳重的傲芙完成签到,获得积分10
14秒前
诗和远方发布了新的文献求助10
15秒前
15秒前
dreamboat发布了新的文献求助10
16秒前
你有事嘛发布了新的文献求助10
16秒前
RANSETI完成签到,获得积分10
16秒前
思源应助刘卿婷采纳,获得20
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071