A Multi-stage Machine Learning Methodology for Health Monitoring of Largely Unobserved Structures Under Varying Environmental Conditions

马氏距离 结构健康监测 计算机科学 桁架桥 自回归模型 人工神经网络 可靠性(半导体) 人工智能 特征(语言学) 机器学习 数据挖掘 模式识别(心理学) 工程类 统计 桁架 结构工程 数学 哲学 功率(物理) 物理 量子力学 语言学
作者
Alireza Entezami,Stefano Mariani,Hashem Shariatmadar
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 297-307
标识
DOI:10.1007/978-3-031-07258-1_31
摘要

Structural Health Monitoring (SHM) via data-driven techniques can be based upon vibrations acquired by sensor networks. However, technical and economic reasons may prevent the deployment of pervasive sensor networks over civil structures, thus limiting their reliability in terms of damage detection. Moreover, the effects of environmental (and operational) variability may lead to false alarms. To address these challenges, a multi-stage machine learning (ML) method is here proposed by exploiting autoregressive (AR) spectra as damage-sensitive features. The proposed method is framed as follows: (i) computing the distances between different sets of the AR spectra via the log-spectral distance (LSD), providing also the training and test datasets; (ii) removing the potential environmental variability by an auto-associative artificial neural network (AANN), to set normalized training and test datasets; (iii) running a statistical analysis via the Mahalanobis-squared distance (MSD) for early damage detection. The effectiveness of the proposed approach is assessed in the case of limited vibration data for the laboratory truss structure known as the Wooden Bridge. Comparative studies show that the AR spectrum is a reliable feature, sensitive to damage even in the presence of a limited number of sensors in the network; additionally, the multi-stage ML methodology succeeds in early detecting damage under environmental variability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助HCZN采纳,获得10
2秒前
zzz完成签到,获得积分10
2秒前
zl12完成签到,获得积分10
2秒前
清和漾发布了新的文献求助10
3秒前
3秒前
4秒前
笙箫发布了新的文献求助10
5秒前
6秒前
喵典娜完成签到,获得积分10
6秒前
6秒前
zl12发布了新的文献求助30
7秒前
ihonest完成签到,获得积分0
7秒前
鑫鑫完成签到,获得积分10
7秒前
8秒前
勤奋苑睐完成签到,获得积分10
8秒前
Cipher完成签到 ,获得积分10
8秒前
Marshall发布了新的文献求助10
9秒前
9秒前
10秒前
YMX0310发布了新的文献求助10
11秒前
key发布了新的文献求助10
11秒前
小于爱科研完成签到,获得积分10
12秒前
yy完成签到,获得积分10
12秒前
12秒前
科研后腿完成签到,获得积分20
13秒前
13秒前
招财进堡完成签到,获得积分10
13秒前
14秒前
荷包蛋完成签到,获得积分10
14秒前
Mininine完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
蜗牛发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
尉迟希望应助kbkyvuy采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515