Caloric restriction reduces the pro-inflammatory eicosanoid 20-hydroxyeicosatetraenoic acid to protect from acute kidney injury

热量理论 急性肾损伤 医学 缺血 内科学 内分泌学 炎症 氧化应激 再灌注损伤
作者
Karla Johanna Ruth Hoyer-Allo,Martin R. Späth,Susanne Brodesser,Yiyi Zhu,Julia Binz-Lotter,Martin Höhne,Hella S. Brönneke,Katrin Bohl,Marc Johnsen,Torsten Kubacki,Katharina Kiefer,Lisa Seufert,Felix C. Koehler,Franziska Grundmann,Matthias J. Hackl,Bernhard Schermer,Jens C. Brüning,Thomas Benzing,Volker Burst,Roman‐Ulrich Müller
出处
期刊:Kidney International [Elsevier]
卷期号:102 (3): 560-576 被引量:9
标识
DOI:10.1016/j.kint.2022.04.033
摘要

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction–mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction––induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting. Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction–mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction––induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting. In This IssueKidney InternationalVol. 102Issue 3PreviewGorski et al. meta-analyzed genome-wide association studies that covered 343,339 individuals to uncover top-priority genes responsible for progressive decline in estimated glomerular filtration rate (eGFR). This analysis identified 12 variants across 11 loci significant for annual decline in eGFR, and 9 variants that were important in analyses adjusted or unadjusted for baseline glomerular filtration rate. The effects of these variants were magnified 2- to 4-fold in patients with diabetes or chronic kidney disease (CKD) at baseline. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Frrrrreda发布了新的文献求助10
刚刚
毛毛发布了新的文献求助10
刚刚
小萝卜发布了新的文献求助10
1秒前
慕夏完成签到,获得积分10
1秒前
充电宝应助ldx采纳,获得10
2秒前
2秒前
小苗儿完成签到,获得积分10
4秒前
kook11发布了新的文献求助30
4秒前
Jans完成签到 ,获得积分10
4秒前
HCLonely应助Roy采纳,获得10
5秒前
5秒前
wzswzs完成签到,获得积分10
5秒前
醋醋发布了新的文献求助10
5秒前
红烧茄子完成签到,获得积分10
5秒前
Roy1998完成签到 ,获得积分10
6秒前
sisyphus_yy发布了新的文献求助10
7秒前
李白完成签到,获得积分10
7秒前
要减肥啤酒完成签到,获得积分10
7秒前
情怀应助wentto采纳,获得10
8秒前
爆米花应助liuzengzhang666采纳,获得10
8秒前
自然莛发布了新的文献求助10
8秒前
孔33完成签到,获得积分10
9秒前
xjtuwang0618完成签到,获得积分10
9秒前
9秒前
9秒前
dengcl-jack完成签到,获得积分10
9秒前
10秒前
keyantong发布了新的文献求助10
10秒前
CodeCraft应助sda采纳,获得10
10秒前
Frrrrreda完成签到,获得积分10
11秒前
fj发布了新的文献求助10
11秒前
龙歪歪完成签到 ,获得积分10
11秒前
暖晴完成签到,获得积分10
11秒前
12秒前
自信安荷完成签到,获得积分10
12秒前
高源伯完成签到 ,获得积分10
12秒前
12秒前
科研通AI2S应助sisyphus_yy采纳,获得10
12秒前
科研通AI2S应助sisyphus_yy采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276