Caloric restriction reduces the pro-inflammatory eicosanoid 20-hydroxyeicosatetraenoic acid to protect from acute kidney injury

热量理论 急性肾损伤 医学 缺血 内科学 内分泌学 炎症 氧化应激 再灌注损伤
作者
Karla Johanna Ruth Hoyer-Allo,Martin R. Späth,Susanne Brodesser,Yiyi Zhu,Julia Binz-Lotter,Martin Höhne,Hella S. Brönneke,Katrin Bohl,Marc Johnsen,Torsten Kubacki,Katharina Kiefer,Lisa Seufert,Felix C. Koehler,Franziska Grundmann,Matthias J. Hackl,Bernhard Schermer,Jens C. Brüning,Thomas Benzing,Volker Burst,Roman‐Ulrich Müller
出处
期刊:Kidney International [Elsevier]
卷期号:102 (3): 560-576 被引量:10
标识
DOI:10.1016/j.kint.2022.04.033
摘要

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction–mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction––induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting. Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction–mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction––induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting. In This IssueKidney InternationalVol. 102Issue 3PreviewGorski et al. meta-analyzed genome-wide association studies that covered 343,339 individuals to uncover top-priority genes responsible for progressive decline in estimated glomerular filtration rate (eGFR). This analysis identified 12 variants across 11 loci significant for annual decline in eGFR, and 9 variants that were important in analyses adjusted or unadjusted for baseline glomerular filtration rate. The effects of these variants were magnified 2- to 4-fold in patients with diabetes or chronic kidney disease (CKD) at baseline. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
min发布了新的文献求助10
刚刚
wanci应助文艺鞋子采纳,获得10
刚刚
forever完成签到,获得积分10
刚刚
冷冷子发布了新的文献求助10
1秒前
1秒前
1秒前
一安发布了新的文献求助10
1秒前
学术肺雾完成签到 ,获得积分10
2秒前
科研通AI6应助山谷与花采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
舒适含之发布了新的文献求助10
4秒前
4秒前
zcl应助年年采纳,获得50
4秒前
4秒前
虚心八宝粥完成签到,获得积分10
5秒前
刘钱美子发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
毛竹发布了新的文献求助10
5秒前
飞云发布了新的文献求助10
6秒前
喝一口奶茶完成签到 ,获得积分10
6秒前
JUAN发布了新的文献求助10
7秒前
8秒前
8秒前
孤独的猕猴桃完成签到,获得积分10
9秒前
9秒前
dgqz发布了新的文献求助10
9秒前
打打应助常璐旸采纳,获得10
10秒前
10秒前
善学以致用应助CheeseD采纳,获得10
10秒前
科研通AI6应助ao采纳,获得10
11秒前
iftx1112发布了新的文献求助10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388748
求助须知:如何正确求助?哪些是违规求助? 4511007
关于积分的说明 14037429
捐赠科研通 4421757
什么是DOI,文献DOI怎么找? 2428916
邀请新用户注册赠送积分活动 1421496
关于科研通互助平台的介绍 1400650