Detection of Left Ventricular Systolic Dysfunction from Electrocardiographic Images

医学 射血分数 心脏病学 内科学 心力衰竭 接收机工作特性 心电图 人工智能 计算机科学
作者
Veer Sangha,Arash Aghajani Nargesi,Lovedeep Singh Dhingra,Akshay Khunte,Bobak J. Mortazavi,Antônio H. Ribeiro,Evgeniya Banina,Oluwaseun Adeola,Nadish Garg,Cynthia Brandt,Edward J. Miller,Antonio Luiz J Ribeiro,Eric J. Velazquez,Luana Giatti,Sandhi Maria Barreto,Murilo Foppa,Neal Yuan,David Ouyang,Harlan M. Krumholz,Rohan Khera
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:4
标识
DOI:10.1101/2022.06.04.22276000
摘要

ABSTRACT Background Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased risk of heart failure and a 2-fold risk of premature death. The use of electrocardiogram (ECG) signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We developed a novel deep learning-based approach that can use ECG images for the screening of LV systolic dysfunction. Methods Using 12-lead ECGs plotted in multiple different formats, and corresponding echocardiographic data recorded within 15 days from the Yale-New Haven Hospital (YNHH) during 2015-2021, we developed a convolutional neural network algorithm to detect LV ejection fraction < 40%. The model was validated within clinical settings at YNHH as well as externally on ECG images from Cedars Sinai Medical Center in Los Angeles, CA, Lake Regional Hospital (LRH) in Osage Beach, MO, Memorial Hermann Southeast Hospital in Houston, TX, and Methodist Cardiology Clinic of San Antonia, TX. In addition, it was validated in the prospective Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Gradient-weighted class activation mapping was used to localize class-discriminating signals in ECG images. Results Overall, 385,601 ECGs with paired echocardiograms were used for model development. The model demonstrated high discrimination power across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.91, area under precision-recall curve [AUPRC] 0.55), and external sets of ECG images from Cedars Sinai (AUROC 90, AUPRC 0.53), outpatient YNHH clinics (AUROC 0.94, AUPRC 0.77), LRH (AUROC 0.90, AUPRC 0.88), Memorial Hermann Southeast Hospital (AUROC 0.91, AUPRC 0.88), Methodist Cardiology Clinic (AUROC 0.90, AUPRC 0.74), and ELSA-Brasil cohort (AUROC 0.95, AUPRC 0.45). An ECG suggestive of LV systolic dysfunction portended over 27-fold higher odds of LV systolic dysfunction on TTE (OR 27.5, 95% CI, 22.3-33.9 in the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V2-V3), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in individuals with LV ejection fraction ≥ 40% at the time of initial assessment was associated with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (HR 3.9, 95% CI 3.3-4.7, median follow-up 3.2 years). Conclusions We developed and externally validated a deep learning model that identifies LV systolic dysfunction from ECG images. This approach represents an automated and accessible screening strategy for LV systolic dysfunction, particularly in low-resource settings. CLINICAL PERSPECTIVE What is New? A convolutional neural network model that accurately identifies LV systolic dysfunction from ECG images across subgroups of age, sex, and race. The model shows robust performance across multiple institutions and health settings, both applied to ECG image databases as well as directly uploaded single ECG images to a web-based application by clinicians. The approach provides information for both screening of LV systolic dysfunction and its risk based on ECG images alone. What are the clinical implications? Our model represents an automated screening strategy for LV systolic dysfunction on a variety of ECG layouts. With availability of ECG images in practice, this approach overcomes implementation challenges of deploying an interoperable screening tool for LV systolic dysfunction in resource-limited settings. This model is available in an online format to facilitate real-time screening for LV systolic dysfunction by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anastasia完成签到 ,获得积分10
2秒前
renpp822发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
如意闭月完成签到,获得积分10
5秒前
7秒前
7秒前
DQ发布了新的文献求助10
9秒前
笑弯了眼发布了新的文献求助10
9秒前
腾总发布了新的文献求助10
9秒前
科研通AI5应助沉静晓丝采纳,获得10
9秒前
dz发布了新的文献求助10
9秒前
456发布了新的文献求助10
10秒前
11秒前
何浏亮完成签到,获得积分10
11秒前
长青发布了新的文献求助10
11秒前
13秒前
丘比特应助zxc采纳,获得10
13秒前
CodeCraft应助dzll采纳,获得10
14秒前
婷婷发布了新的文献求助10
15秒前
Jupiter完成签到,获得积分10
15秒前
15秒前
meena完成签到,获得积分20
16秒前
科研通AI5应助明理的绿柏采纳,获得10
17秒前
18秒前
狂野的锦程完成签到,获得积分10
19秒前
momo发布了新的文献求助10
19秒前
20秒前
20秒前
RR发布了新的文献求助10
20秒前
21秒前
科研通AI5应助小夏饭桶采纳,获得10
21秒前
Duchung发布了新的文献求助10
23秒前
昕昕子发布了新的文献求助10
24秒前
25秒前
25秒前
水lunwen完成签到 ,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174