已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of Left Ventricular Systolic Dysfunction from Electrocardiographic Images

医学 射血分数 心脏病学 内科学 心力衰竭 接收机工作特性 人工智能 计算机科学
作者
Veer Sangha,Arash Aghajani Nargesi,Lovedeep Singh Dhingra,Akshay Khunte,Bobak J. Mortazavi,Antônio H. Ribeiro,Evgeniya Banina,Oluwaseun Adeola,Nadish Garg,Cynthia Brandt,Edward J. Miller,Antônio Luiz Pinho Ribeiro,Eric J. Velazquez,Luana Giatti,Sandhi Maria Barreto,Murilo Foppa,Neal Yuan,David Ouyang,Harlan M. Krumholz,Rohan Khera
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.06.04.22276000
摘要

ABSTRACT Background Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased risk of heart failure and a 2-fold risk of premature death. The use of electrocardiogram (ECG) signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We developed a novel deep learning-based approach that can use ECG images for the screening of LV systolic dysfunction. Methods Using 12-lead ECGs plotted in multiple different formats, and corresponding echocardiographic data recorded within 15 days from the Yale-New Haven Hospital (YNHH) during 2015-2021, we developed a convolutional neural network algorithm to detect LV ejection fraction < 40%. The model was validated within clinical settings at YNHH as well as externally on ECG images from Cedars Sinai Medical Center in Los Angeles, CA, Lake Regional Hospital (LRH) in Osage Beach, MO, Memorial Hermann Southeast Hospital in Houston, TX, and Methodist Cardiology Clinic of San Antonia, TX. In addition, it was validated in the prospective Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Gradient-weighted class activation mapping was used to localize class-discriminating signals in ECG images. Results Overall, 385,601 ECGs with paired echocardiograms were used for model development. The model demonstrated high discrimination power across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.91, area under precision-recall curve [AUPRC] 0.55), and external sets of ECG images from Cedars Sinai (AUROC 90, AUPRC 0.53), outpatient YNHH clinics (AUROC 0.94, AUPRC 0.77), LRH (AUROC 0.90, AUPRC 0.88), Memorial Hermann Southeast Hospital (AUROC 0.91, AUPRC 0.88), Methodist Cardiology Clinic (AUROC 0.90, AUPRC 0.74), and ELSA-Brasil cohort (AUROC 0.95, AUPRC 0.45). An ECG suggestive of LV systolic dysfunction portended over 27-fold higher odds of LV systolic dysfunction on TTE (OR 27.5, 95% CI, 22.3-33.9 in the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V2-V3), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in individuals with LV ejection fraction ≥ 40% at the time of initial assessment was associated with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (HR 3.9, 95% CI 3.3-4.7, median follow-up 3.2 years). Conclusions We developed and externally validated a deep learning model that identifies LV systolic dysfunction from ECG images. This approach represents an automated and accessible screening strategy for LV systolic dysfunction, particularly in low-resource settings. CLINICAL PERSPECTIVE What is New? A convolutional neural network model that accurately identifies LV systolic dysfunction from ECG images across subgroups of age, sex, and race. The model shows robust performance across multiple institutions and health settings, both applied to ECG image databases as well as directly uploaded single ECG images to a web-based application by clinicians. The approach provides information for both screening of LV systolic dysfunction and its risk based on ECG images alone. What are the clinical implications? Our model represents an automated screening strategy for LV systolic dysfunction on a variety of ECG layouts. With availability of ECG images in practice, this approach overcomes implementation challenges of deploying an interoperable screening tool for LV systolic dysfunction in resource-limited settings. This model is available in an online format to facilitate real-time screening for LV systolic dysfunction by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
3秒前
4秒前
gggghhhh发布了新的文献求助10
5秒前
科目三应助李思言采纳,获得20
9秒前
10秒前
11秒前
北雨发布了新的文献求助10
15秒前
15秒前
MAC发布了新的文献求助10
16秒前
丘比特应助QF采纳,获得10
17秒前
17秒前
18秒前
19秒前
20秒前
岸在海的深处完成签到 ,获得积分10
21秒前
wanci应助失眠的水风采纳,获得10
22秒前
23秒前
nnnd77发布了新的文献求助10
23秒前
暴躁的元灵完成签到 ,获得积分10
26秒前
李思言发布了新的文献求助20
30秒前
似水流年完成签到,获得积分20
31秒前
MillionMiao发布了新的文献求助30
31秒前
32秒前
32秒前
天天快乐应助小方采纳,获得10
34秒前
南宫书瑶发布了新的文献求助10
35秒前
35秒前
lsh发布了新的文献求助10
35秒前
lxy66881完成签到,获得积分10
36秒前
孝顺的尔丝完成签到,获得积分10
36秒前
JamesPei应助piglet采纳,获得10
37秒前
38秒前
39秒前
same发布了新的文献求助10
42秒前
44秒前
上官若男应助El采纳,获得30
45秒前
嗯哼完成签到,获得积分10
46秒前
鲜艳的盼曼关注了科研通微信公众号
46秒前
小方完成签到,获得积分10
46秒前
Akim应助槑槑201415采纳,获得10
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154722
求助须知:如何正确求助?哪些是违规求助? 2805534
关于积分的说明 7865058
捐赠科研通 2463710
什么是DOI,文献DOI怎么找? 1311554
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832