Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion

厌氧消化 机器学习 随机森林 沼渣 人工智能 人工神经网络 计算机科学 均方误差 丰度(生态学) 算法 数学 生物 统计 生态学 甲烷
作者
Nervana Haffiez,Tae Hyun Chung,Basem S. Zakaria,Manjila Shahidi,Symon Mezbahuddin,Rasha Maal‐Bared,Bipro Ranjan Dhar
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:839: 156211-156211 被引量:30
标识
DOI:10.1016/j.scitotenv.2022.156211
摘要

The land application of digestate from anaerobic digestion (AD) is considered a significant route for transmitting antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) to ecosystems. To date, efforts towards understanding complex non-linear interactions between AD operating parameters with ARG/MGE abundances rely on experimental investigations due to a lack of mechanistic models. Herein, three different machine learning (ML) algorithms, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN), were compared for their predictive capacities in simulating ARG/MGE abundance changes during AD. The models were trained and cross-validated using experimental data collected from 33 published literature. The comparison of model performance using coefficients of determination (R2) and root mean squared errors (RMSE) indicated that ANN was more reliable than RF and XGBoost. The mode of operation (batch/semi-continuous), co-digestion of food waste and sewage sludge, and residence time were identified as the three most critical features in predicting ARG/MGE abundance changes. Moreover, the trained ANN model could simulate non-linear interactions between operational parameters and ARG/MGE abundance changes that could be interpreted intuitively based on existing knowledge. Overall, this study demonstrates that machine learning can enable a reliable predictive model that can provide a holistic optimization tool for mitigating the ARG/MGE transmission potential of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许七安完成签到 ,获得积分10
1秒前
我是老大应助聆听采纳,获得10
2秒前
无奈素发布了新的文献求助10
2秒前
优秀的莹发布了新的文献求助10
3秒前
饱满的箴完成签到 ,获得积分10
3秒前
悦耳的机器猫完成签到,获得积分10
6秒前
Akim应助虞无声采纳,获得10
6秒前
7秒前
乐乐应助菠萝采纳,获得10
8秒前
无奈素完成签到,获得积分10
8秒前
奋斗慕凝完成签到 ,获得积分10
8秒前
8秒前
夜盏丿完成签到,获得积分10
8秒前
XHL完成签到,获得积分10
9秒前
Yuri完成签到,获得积分10
9秒前
Zhaowx完成签到,获得积分10
9秒前
狗熊完成签到,获得积分10
11秒前
Supermao完成签到,获得积分10
12秒前
认真翠曼发布了新的文献求助10
12秒前
LZY发布了新的文献求助10
12秒前
多么完美的一天完成签到,获得积分10
13秒前
smile完成签到,获得积分10
13秒前
星月·夜空完成签到,获得积分10
15秒前
坚强亦丝应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得20
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得30
15秒前
打打应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得20
16秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291714
求助须知:如何正确求助?哪些是违规求助? 2928172
关于积分的说明 8435908
捐赠科研通 2600111
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660173
邀请新用户注册赠送积分活动 642808