An overview of Human Action Recognition in sports based on Computer Vision

动作(物理) 任务(项目管理) 计算机科学 集合(抽象数据类型) 动作识别 篮球 领域(数学) 人机交互 人工智能 领域(数学分析) 点(几何) 机器学习 工程类 数学 班级(哲学) 数学分析 物理 几何学 系统工程 考古 量子力学 纯数学 历史 程序设计语言
作者
Kristina Host,Marina Ivašić-Kos
出处
期刊:Heliyon [Elsevier]
卷期号:8 (6): e09633-e09633 被引量:64
标识
DOI:10.1016/j.heliyon.2022.e09633
摘要

Human Action Recognition (HAR) is a challenging task used in sports such as volleyball, basketball, soccer, and tennis to detect players and recognize their actions and teams' activities during training, matches, warm-ups, or competitions. HAR aims to detect the person performing the action on an unknown video sequence, determine the action's duration, and identify the action type. The main idea of HAR in sports is to monitor a player's performance, that is, to detect the player, track their movements, recognize the performed action, compare various actions, compare different kinds and skills of acting performances, or make automatic statistical analysis.As an action that can occur in the sports field refers to a set of physical movements performed by a player in order to complete a task using their body or interacting with objects or other persons, actions can be of different complexity. Because of that, a novel systematization of actions based on complexity and level of performance and interactions is proposed.The overview of HAR research focuses on various methods performed on publicly available datasets, including actions of everyday activities. That is just a good starting point; however, HAR is increasingly represented in sports and is becoming more directed towards recognizing similar actions of a particular sports domain. Therefore, this paper presents an overview of HAR applications in sports primarily based on Computer Vision as the main contribution, along with popular publicly available datasets for this purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巨型肥猫发布了新的文献求助10
1秒前
原野小年发布了新的文献求助10
1秒前
轻松白秋完成签到,获得积分10
1秒前
Genius发布了新的文献求助10
1秒前
善学以致用应助123采纳,获得10
2秒前
g7001完成签到,获得积分10
2秒前
2秒前
月儿发布了新的文献求助30
2秒前
2秒前
阔达灭绝完成签到,获得积分20
3秒前
科研通AI5应助忧伤的井采纳,获得10
3秒前
小马甲应助将1采纳,获得10
3秒前
4秒前
jinghong完成签到 ,获得积分10
4秒前
Owen应助YYuanr采纳,获得30
4秒前
kikiL完成签到 ,获得积分10
4秒前
脑洞疼应助蓝莓松饼采纳,获得10
4秒前
香菜发布了新的文献求助10
4秒前
洛宁完成签到,获得积分10
4秒前
5秒前
5秒前
mulberry完成签到,获得积分10
5秒前
6秒前
lingyan hu发布了新的文献求助10
6秒前
ssz完成签到,获得积分10
7秒前
南陌故人完成签到,获得积分20
8秒前
太陽完成签到 ,获得积分10
8秒前
8秒前
lgying发布了新的文献求助30
8秒前
苏su完成签到,获得积分10
8秒前
nice发布了新的文献求助10
8秒前
111发布了新的文献求助10
9秒前
9秒前
高会和发布了新的文献求助10
10秒前
10秒前
baolongzhan发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
乌梅不乌完成签到,获得积分10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481607
求助须知:如何正确求助?哪些是违规求助? 3071658
关于积分的说明 9123400
捐赠科研通 2763408
什么是DOI,文献DOI怎么找? 1516476
邀请新用户注册赠送积分活动 701579
科研通“疑难数据库(出版商)”最低求助积分说明 700426