Er-doped hybrid waveguide amplifiers with multiple spatially engineered active layers for on-chip optical gain enhancement

材料科学 光电子学 放大器 波导管 光放大器 光子学 硅光子学 晶体管阵列 激光阈值 激光器 兴奋剂 光学 CMOS芯片 物理 波长
作者
John Rönn,Kalle Niiranen,M.N. Saarniheimo,Sami Sneck,Zhipei Sun
标识
DOI:10.1117/12.2624593
摘要

Over the last decades, rare-earth-doped materials such erbium, holmium and thulium have been extensively studied as a cost-efficient solution for optical amplification and lasing on the silicon photonic platform. When combined with suitable host medium and integrated circuit design, rare-earth doped materials can be tailored into efficient and low-noise integrated devices such as waveguide amplifiers and lasers with relatively straightforward and cheap fabrication techniques. Despite their superior properties and potential, rare-earth-doped waveguide technology still remains relatively immature when it comes to the production of competitive building blocks for the silicon photonics industry. Further improvements, such as higher gain, scalable fabrication process and lower deposition temperatures need to be pursued for ultimate cost-efficiency and silicon photonic circuit compatibility. In this work, we present a novel waveguide amplifier design that combines silicon nitride strip waveguides and multiple spatially engineered erbium-doped active layers to improve the gain characteristics of hybrid waveguide amplifiers fabricated on silicon with cost-effective and mass-scalable methods. By spatially controlling the erbium-ion distribution of the proposed multilayer waveguide amplifier such that it matches the transverse intensity distribution of the fundamental mode propagating within the device, we show up to 30% enhanced optical gain when compared to an amplifier design that utilizes only a single gain layer. The design, enabled by atomic layer deposition, opens a completely new approach in developing silicon-integrated waveguide amplifiers and lasers with as high efficiency extracted from the active section as possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阜睿完成签到 ,获得积分10
1秒前
独特的凝荷完成签到,获得积分10
1秒前
喜悦的月光完成签到,获得积分10
3秒前
糖丸完成签到,获得积分10
4秒前
4秒前
压缩完成签到 ,获得积分10
6秒前
Pxingyu完成签到,获得积分10
6秒前
bella完成签到,获得积分10
6秒前
Willwzh完成签到,获得积分10
9秒前
PeterBeau完成签到 ,获得积分10
9秒前
端庄白猫发布了新的文献求助10
10秒前
sophia完成签到 ,获得积分10
11秒前
雪白的紫翠完成签到 ,获得积分10
13秒前
14秒前
x凡完成签到,获得积分10
15秒前
15秒前
你好呀发布了新的文献求助10
16秒前
17秒前
19秒前
松鼠15111完成签到,获得积分10
19秒前
热固性塑料完成签到,获得积分10
19秒前
20秒前
林枫中日完成签到,获得积分10
20秒前
vfuisNBIO12发布了新的文献求助10
20秒前
武雨珍完成签到,获得积分10
23秒前
王梓磬发布了新的文献求助10
24秒前
zhx完成签到,获得积分10
24秒前
ZH发布了新的文献求助10
25秒前
杂化轨道退役研究员完成签到,获得积分10
25秒前
牛轧糖完成签到 ,获得积分10
27秒前
小二郎应助eyu采纳,获得10
27秒前
Wangjialin完成签到 ,获得积分10
27秒前
zz完成签到,获得积分10
28秒前
随缘完成签到,获得积分10
28秒前
28秒前
小超人完成签到 ,获得积分10
30秒前
结实嚣完成签到,获得积分10
30秒前
端庄白猫完成签到,获得积分10
31秒前
tanwenbin发布了新的文献求助10
31秒前
vfuisNBIO12完成签到,获得积分20
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011