Er-doped hybrid waveguide amplifiers with multiple spatially engineered active layers for on-chip optical gain enhancement

材料科学 光电子学 放大器 波导管 光放大器 光子学 硅光子学 晶体管阵列 激光阈值 激光器 兴奋剂 光学 CMOS芯片 物理 波长
作者
John Rönn,Kalle Niiranen,M.N. Saarniheimo,Sami Sneck,Zhipei Sun
标识
DOI:10.1117/12.2624593
摘要

Over the last decades, rare-earth-doped materials such erbium, holmium and thulium have been extensively studied as a cost-efficient solution for optical amplification and lasing on the silicon photonic platform. When combined with suitable host medium and integrated circuit design, rare-earth doped materials can be tailored into efficient and low-noise integrated devices such as waveguide amplifiers and lasers with relatively straightforward and cheap fabrication techniques. Despite their superior properties and potential, rare-earth-doped waveguide technology still remains relatively immature when it comes to the production of competitive building blocks for the silicon photonics industry. Further improvements, such as higher gain, scalable fabrication process and lower deposition temperatures need to be pursued for ultimate cost-efficiency and silicon photonic circuit compatibility. In this work, we present a novel waveguide amplifier design that combines silicon nitride strip waveguides and multiple spatially engineered erbium-doped active layers to improve the gain characteristics of hybrid waveguide amplifiers fabricated on silicon with cost-effective and mass-scalable methods. By spatially controlling the erbium-ion distribution of the proposed multilayer waveguide amplifier such that it matches the transverse intensity distribution of the fundamental mode propagating within the device, we show up to 30% enhanced optical gain when compared to an amplifier design that utilizes only a single gain layer. The design, enabled by atomic layer deposition, opens a completely new approach in developing silicon-integrated waveguide amplifiers and lasers with as high efficiency extracted from the active section as possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
桑葚啊完成签到,获得积分10
3秒前
复杂的之卉完成签到,获得积分10
6秒前
6秒前
6秒前
plant发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
甜蜜寄文完成签到 ,获得积分10
11秒前
12秒前
12秒前
落寞奎发布了新的文献求助10
13秒前
你怎么那么美完成签到,获得积分10
13秒前
13秒前
15秒前
小马甲应助wzj采纳,获得10
15秒前
传奇3应助plant采纳,获得10
15秒前
Ava应助SL采纳,获得10
16秒前
xxxyuxi发布了新的文献求助10
16秒前
19秒前
Bio应助Nelson采纳,获得30
20秒前
Triste发布了新的文献求助10
20秒前
21秒前
21秒前
幽默的小之完成签到,获得积分10
21秒前
落寞奎完成签到,获得积分10
21秒前
23秒前
23秒前
oliver1234完成签到,获得积分10
23秒前
23秒前
月下荷花发布了新的文献求助10
24秒前
xxxyuxi完成签到,获得积分10
24秒前
oliver1234发布了新的文献求助20
26秒前
26秒前
Lucas应助Chenyan775199采纳,获得10
27秒前
李浩然发布了新的文献求助10
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182