Er-doped hybrid waveguide amplifiers with multiple spatially engineered active layers for on-chip optical gain enhancement

材料科学 光电子学 放大器 波导管 光放大器 光子学 硅光子学 晶体管阵列 激光阈值 激光器 兴奋剂 光学 CMOS芯片 物理 波长
作者
John Rönn,Kalle Niiranen,M.N. Saarniheimo,Sami Sneck,Zhipei Sun
标识
DOI:10.1117/12.2624593
摘要

Over the last decades, rare-earth-doped materials such erbium, holmium and thulium have been extensively studied as a cost-efficient solution for optical amplification and lasing on the silicon photonic platform. When combined with suitable host medium and integrated circuit design, rare-earth doped materials can be tailored into efficient and low-noise integrated devices such as waveguide amplifiers and lasers with relatively straightforward and cheap fabrication techniques. Despite their superior properties and potential, rare-earth-doped waveguide technology still remains relatively immature when it comes to the production of competitive building blocks for the silicon photonics industry. Further improvements, such as higher gain, scalable fabrication process and lower deposition temperatures need to be pursued for ultimate cost-efficiency and silicon photonic circuit compatibility. In this work, we present a novel waveguide amplifier design that combines silicon nitride strip waveguides and multiple spatially engineered erbium-doped active layers to improve the gain characteristics of hybrid waveguide amplifiers fabricated on silicon with cost-effective and mass-scalable methods. By spatially controlling the erbium-ion distribution of the proposed multilayer waveguide amplifier such that it matches the transverse intensity distribution of the fundamental mode propagating within the device, we show up to 30% enhanced optical gain when compared to an amplifier design that utilizes only a single gain layer. The design, enabled by atomic layer deposition, opens a completely new approach in developing silicon-integrated waveguide amplifiers and lasers with as high efficiency extracted from the active section as possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助酷bile采纳,获得10
刚刚
AUGS酒发布了新的文献求助10
刚刚
杨lei完成签到,获得积分10
1秒前
2秒前
2秒前
哈哈哈完成签到 ,获得积分10
2秒前
3秒前
曹琳发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
久念发布了新的文献求助10
5秒前
悦耳难摧发布了新的文献求助10
5秒前
可爱的函函应助Arthur采纳,获得10
5秒前
JamesPei应助vivi猫小咪采纳,获得10
6秒前
共享精神应助独特的高山采纳,获得10
6秒前
maxine完成签到,获得积分10
6秒前
zhegewa完成签到,获得积分10
6秒前
6秒前
SciGPT应助三三采纳,获得10
7秒前
Jasper应助狄鹤轩采纳,获得10
7秒前
廖思巧完成签到,获得积分20
7秒前
8秒前
8秒前
jie酱拌面应助南宫白竹采纳,获得10
8秒前
昼夜本色发布了新的文献求助10
9秒前
zhegewa发布了新的文献求助10
9秒前
独特的鱼完成签到,获得积分10
9秒前
9秒前
完美世界应助飘逸的又夏采纳,获得10
10秒前
清墨发布了新的文献求助30
11秒前
Halo发布了新的文献求助10
11秒前
11秒前
zz发布了新的文献求助10
11秒前
12秒前
12秒前
丘比特应助木每采纳,获得10
12秒前
小鲁完成签到,获得积分20
12秒前
12秒前
脑洞疼应助hh采纳,获得10
13秒前
呜哈哈发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058