Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments

计算机科学 云计算 分布式计算 强化学习 工作流程 调度(生产过程) 边缘计算 边缘设备 杠杆(统计) 能源消耗 人工智能 操作系统 数学优化 数据库 数学 生态学 生物
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:137: 14-30 被引量:44
标识
DOI:10.1016/j.future.2022.06.012
摘要

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge computing has emerged as a viable solution which complements cloud thereby enabling the integrated edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast majority of existing studies have proposed scheduling frameworks for individual tasks and only very few works have considered the more challenging problem of scheduling complex workloads such as workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed infrastructures. It is further complicated when scheduling framework needs to coordinate workflow executions across resource constrained and highly distributed edge–cloud environments. In this work, we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of overcoming the aforementioned challenges. Different from all existing works we have designed a novel hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–cloud environments. Performance of the proposed framework was compared against several baseline algorithms using energy consumption, execution time, percentage of deadline hits and percentage of jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with respect to energy consumption and 46% with respect to execution time compared to time and energy optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in par with the energy optimized baseline and execution time in par with the time optimized baseline. The results thus demonstrate the superiority of the proposed technique in establishing the best-trade off between the conflicting goals of minimizing energy consumption and execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴维发布了新的文献求助10
刚刚
YYL完成签到,获得积分10
1秒前
hsss驳回了英姑应助
2秒前
tjcu发布了新的文献求助30
3秒前
6秒前
Iridescent完成签到 ,获得积分10
6秒前
西园寺鹿旎应助tjcu采纳,获得30
7秒前
7秒前
8秒前
twistzz完成签到 ,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
迷路的初柔完成签到,获得积分10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Zx_1993应助科研通管家采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
10秒前
allanqiao发布了新的文献求助10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
10秒前
归尘应助科研通管家采纳,获得10
10秒前
桐桐应助MR_Z采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553