Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments

计算机科学 云计算 分布式计算 强化学习 工作流程 调度(生产过程) 边缘计算 边缘设备 杠杆(统计) 能源消耗 人工智能 操作系统 数学优化 数据库 生物 数学 生态学
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:137: 14-30 被引量:44
标识
DOI:10.1016/j.future.2022.06.012
摘要

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge computing has emerged as a viable solution which complements cloud thereby enabling the integrated edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast majority of existing studies have proposed scheduling frameworks for individual tasks and only very few works have considered the more challenging problem of scheduling complex workloads such as workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed infrastructures. It is further complicated when scheduling framework needs to coordinate workflow executions across resource constrained and highly distributed edge–cloud environments. In this work, we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of overcoming the aforementioned challenges. Different from all existing works we have designed a novel hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–cloud environments. Performance of the proposed framework was compared against several baseline algorithms using energy consumption, execution time, percentage of deadline hits and percentage of jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with respect to energy consumption and 46% with respect to execution time compared to time and energy optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in par with the energy optimized baseline and execution time in par with the time optimized baseline. The results thus demonstrate the superiority of the proposed technique in establishing the best-trade off between the conflicting goals of minimizing energy consumption and execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttm完成签到,获得积分10
1秒前
1秒前
2秒前
xuan发布了新的文献求助10
2秒前
5秒前
阿亮完成签到 ,获得积分10
6秒前
Atticus发布了新的文献求助10
6秒前
cy发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助150
8秒前
芝士发布了新的文献求助10
8秒前
香蕉觅云应助HJJHJH采纳,获得10
9秒前
矮小的向雪完成签到 ,获得积分10
9秒前
三腔二囊管完成签到,获得积分10
9秒前
王圈完成签到,获得积分10
9秒前
孤独的乌龟完成签到,获得积分10
10秒前
LUK_完成签到,获得积分10
10秒前
12秒前
冷傲新柔完成签到,获得积分10
13秒前
14秒前
17秒前
科研通AI6应助ayumi采纳,获得10
18秒前
cy关闭了cy文献求助
18秒前
852应助哩蒜呐采纳,获得10
19秒前
NexusExplorer应助我必中采纳,获得10
19秒前
阿崔完成签到,获得积分10
19秒前
冷傲新柔发布了新的文献求助10
19秒前
汉堡包应助qq采纳,获得10
21秒前
21秒前
彭于晏应助辛勤的日记本采纳,获得30
21秒前
安详的夜蕾完成签到,获得积分10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
郭郝应助科研通管家采纳,获得10
22秒前
不配.应助科研通管家采纳,获得150
22秒前
研友_VZG7GZ应助xuan采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099