Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments

计算机科学 云计算 分布式计算 强化学习 工作流程 调度(生产过程) 边缘计算 边缘设备 杠杆(统计) 能源消耗 人工智能 操作系统 数学优化 数据库 生物 数学 生态学
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:137: 14-30 被引量:44
标识
DOI:10.1016/j.future.2022.06.012
摘要

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge computing has emerged as a viable solution which complements cloud thereby enabling the integrated edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast majority of existing studies have proposed scheduling frameworks for individual tasks and only very few works have considered the more challenging problem of scheduling complex workloads such as workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed infrastructures. It is further complicated when scheduling framework needs to coordinate workflow executions across resource constrained and highly distributed edge–cloud environments. In this work, we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of overcoming the aforementioned challenges. Different from all existing works we have designed a novel hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–cloud environments. Performance of the proposed framework was compared against several baseline algorithms using energy consumption, execution time, percentage of deadline hits and percentage of jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with respect to energy consumption and 46% with respect to execution time compared to time and energy optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in par with the energy optimized baseline and execution time in par with the time optimized baseline. The results thus demonstrate the superiority of the proposed technique in establishing the best-trade off between the conflicting goals of minimizing energy consumption and execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
axhh发布了新的文献求助10
1秒前
笨笨的愫应助番茄大王采纳,获得10
2秒前
2秒前
皮蛋solo粥发布了新的文献求助10
2秒前
2秒前
kong完成签到,获得积分10
2秒前
3秒前
盛景洲发布了新的文献求助10
3秒前
十令完成签到,获得积分10
3秒前
3秒前
orixero应助一心搞科研采纳,获得10
4秒前
称心道消发布了新的文献求助10
5秒前
5秒前
慕青应助瘦瘦慕凝采纳,获得10
6秒前
6秒前
moneymonoo完成签到,获得积分10
6秒前
6秒前
勤恳的雨文完成签到,获得积分10
6秒前
7秒前
聪慧小霜应助sharronjxx采纳,获得10
7秒前
勤奋青寒发布了新的文献求助10
8秒前
赘婿应助海盐采纳,获得30
8秒前
9秒前
可爱的函函应助Tiffany采纳,获得10
9秒前
诸葛朝雪完成签到,获得积分10
9秒前
10秒前
san行发布了新的文献求助10
10秒前
moneymonoo发布了新的文献求助10
11秒前
11秒前
阿翔完成签到,获得积分10
11秒前
闪闪寒云完成签到 ,获得积分10
11秒前
11秒前
JYY发布了新的文献求助10
11秒前
寒战发布了新的文献求助10
12秒前
tzj发布了新的文献求助10
12秒前
一心搞科研完成签到,获得积分10
13秒前
等风来关注了科研通微信公众号
13秒前
13秒前
搜集达人应助坦率的含海采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585651
求助须知:如何正确求助?哪些是违规求助? 4002263
关于积分的说明 12389980
捐赠科研通 3678396
什么是DOI,文献DOI怎么找? 2027345
邀请新用户注册赠送积分活动 1060821
科研通“疑难数据库(出版商)”最低求助积分说明 947307