亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments

计算机科学 云计算 分布式计算 强化学习 工作流程 调度(生产过程) 边缘计算 边缘设备 杠杆(统计) 能源消耗 人工智能 操作系统 数学优化 数据库 数学 生态学 生物
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:137: 14-30 被引量:44
标识
DOI:10.1016/j.future.2022.06.012
摘要

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge computing has emerged as a viable solution which complements cloud thereby enabling the integrated edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast majority of existing studies have proposed scheduling frameworks for individual tasks and only very few works have considered the more challenging problem of scheduling complex workloads such as workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed infrastructures. It is further complicated when scheduling framework needs to coordinate workflow executions across resource constrained and highly distributed edge–cloud environments. In this work, we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of overcoming the aforementioned challenges. Different from all existing works we have designed a novel hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–cloud environments. Performance of the proposed framework was compared against several baseline algorithms using energy consumption, execution time, percentage of deadline hits and percentage of jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with respect to energy consumption and 46% with respect to execution time compared to time and energy optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in par with the energy optimized baseline and execution time in par with the time optimized baseline. The results thus demonstrate the superiority of the proposed technique in establishing the best-trade off between the conflicting goals of minimizing energy consumption and execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzd完成签到,获得积分10
3秒前
xi12345完成签到,获得积分10
7秒前
7秒前
二十八画生完成签到,获得积分10
27秒前
27秒前
32秒前
Dritsw应助mmyhn采纳,获得10
45秒前
49秒前
周周粥完成签到 ,获得积分10
50秒前
春天的粥完成签到 ,获得积分10
1分钟前
科研通AI5应助寒冷苗条采纳,获得10
1分钟前
1分钟前
雪生在无人荒野完成签到,获得积分10
1分钟前
1分钟前
寒冷苗条发布了新的文献求助10
1分钟前
2分钟前
2分钟前
陈艺平关注了科研通微信公众号
2分钟前
一行白鹭发布了新的文献求助10
2分钟前
寒冷苗条完成签到,获得积分10
2分钟前
所所应助一行白鹭采纳,获得10
2分钟前
陈艺平发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
搜集达人应助zmmm采纳,获得10
3分钟前
赘婿应助VERITAS采纳,获得10
3分钟前
3分钟前
zmmm发布了新的文献求助10
3分钟前
3分钟前
上官若男应助02采纳,获得10
3分钟前
3分钟前
NinG发布了新的文献求助10
4分钟前
4分钟前
fengfenghao完成签到,获得积分10
4分钟前
小广完成签到,获得积分10
4分钟前
稚久完成签到,获得积分10
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510910
关于积分的说明 11155555
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214