Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments

计算机科学 云计算 分布式计算 强化学习 工作流程 调度(生产过程) 边缘计算 边缘设备 杠杆(统计) 能源消耗 人工智能 操作系统 数学优化 数据库 数学 生态学 生物
作者
Amanda Jayanetti,Saman Halgamuge,Rajkumar Buyya
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:137: 14-30 被引量:44
标识
DOI:10.1016/j.future.2022.06.012
摘要

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge computing has emerged as a viable solution which complements cloud thereby enabling the integrated edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast majority of existing studies have proposed scheduling frameworks for individual tasks and only very few works have considered the more challenging problem of scheduling complex workloads such as workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed infrastructures. It is further complicated when scheduling framework needs to coordinate workflow executions across resource constrained and highly distributed edge–cloud environments. In this work, we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of overcoming the aforementioned challenges. Different from all existing works we have designed a novel hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–cloud environments. Performance of the proposed framework was compared against several baseline algorithms using energy consumption, execution time, percentage of deadline hits and percentage of jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed 56% better with respect to energy consumption and 46% with respect to execution time compared to time and energy optimized baselines, respectively. This was achieved while also maintaining the energy efficiency in par with the energy optimized baseline and execution time in par with the time optimized baseline. The results thus demonstrate the superiority of the proposed technique in establishing the best-trade off between the conflicting goals of minimizing energy consumption and execution time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给我打只山鹰吧完成签到,获得积分10
刚刚
葛藟萦藤发布了新的文献求助10
刚刚
zhz完成签到,获得积分10
2秒前
LY完成签到,获得积分20
2秒前
笑点低胡萝卜完成签到,获得积分10
2秒前
无花果应助Le采纳,获得10
2秒前
2秒前
桐桐应助坚定的又莲采纳,获得10
3秒前
牛牛完成签到,获得积分10
3秒前
xxp完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
芭芭拉冲呀完成签到,获得积分10
6秒前
6秒前
在水一方应助李欣荣采纳,获得10
6秒前
lxiaok完成签到,获得积分10
6秒前
7秒前
葛藟萦藤完成签到,获得积分10
7秒前
施小雨完成签到,获得积分10
7秒前
9秒前
red发布了新的文献求助10
10秒前
我是老大应助徐大大采纳,获得10
10秒前
XxxxxxENT发布了新的文献求助10
10秒前
丘比特应助LY采纳,获得10
10秒前
一颗大葡萄完成签到,获得积分10
10秒前
shuo完成签到,获得积分10
11秒前
kyanite发布了新的文献求助30
11秒前
12秒前
12秒前
繁荣的远航完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
XxxxxxENT完成签到,获得积分10
15秒前
15秒前
15秒前
小卡完成签到 ,获得积分10
15秒前
Jasper应助CHAIZH采纳,获得10
16秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441097
求助须知:如何正确求助?哪些是违规求助? 3037459
关于积分的说明 8969152
捐赠科研通 2726008
什么是DOI,文献DOI怎么找? 1495147
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687922