电解质
离子电导率
材料科学
快离子导体
锂(药物)
化学工程
塑料晶体
离子键合
电导率
聚合物
电池(电)
离子
无机化学
电极
化学
相(物质)
复合材料
有机化学
物理化学
热力学
医学
工程类
内分泌学
功率(物理)
物理
作者
Anyi Hu,Zhu Liao,Jun Huang,Yun Zhang,Qirui Yang,Zhengxi Zhang,Li Yang,Shin‐ichi Hirano
标识
DOI:10.1016/j.cej.2022.137661
摘要
Solid polymer electrolytes (SPEs) are expected to play an important role in high-energy lithium metal batteries (LMBs). Unfortunately, SPEs suffer from inadequate room-temperature ionic conductivity and sluggish interfacial charge transport, which severely limit their widespread applications in LMBs. Herein, we in-situ construct dual lithium-ion migration channels based SPEs by combining ring-opening polymerization of 1,3-dioxolane and solid-state organic ionic plastic crystals. “Coordination-dissociation” with the oxygen atoms in polymer chain segments and fast ion migration inside the organic ionic plastic crystal are two migration modes formed in-situ to synergistically enhance the ionic conductivity and interfacial charge transfer of SPEs. As a result, the in-situ formed poly(1,3-dioxolane)-based solid electrolytes (PDEs) not only afford an integrated battery structure with stabilized electrodes/electrolyte interface but also achieve outstanding oxidation stability, uniform lithium deposition (greater than1200 h under 0.5 mAh cm−2 in symmetric Li cells). Based on PDEs, the Li-LiFePO4 batteries demonstrate excellent cycle stability (almost no capacity decay after 500 cycles under 2C at 25 °C) and a wide operating temperature (-15 ∼ 45 °C). Also, applications of PDEs in Li-LiNi0.6Mn0.2Co0.2O2 batteries further demonstrate the compatibility of PDE with high voltage battery systems. Our study provides a facile and practical approach for creating solid electrolytes that meet both the ionic conductivity and interfacial charge transport requirements for practical solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI