生物相容性
材料科学
涂层
X射线光电子能谱
无定形固体
腐蚀
化学工程
纳米技术
复合材料
冶金
化学
结晶学
工程类
作者
Felipe Cemin,Leonardo Luís Artico,Vanessa Piroli,José Andres Yunes,Carlos A. Figueroa,F. Alvarez
标识
DOI:10.1016/j.apsusc.2022.153615
摘要
This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is > 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.
科研通智能强力驱动
Strongly Powered by AbleSci AI