已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating confidence intervals for spatial hierarchical mixed-effects models with post-stratification

置信区间 统计 分层(种子) 多级模型 计量经济学 数学 生物 种子休眠 植物 发芽 休眠
作者
Hong Yuan,Bo Cai,Jan M. Eberth,Alexander C. McLain
出处
期刊:spatial statistics [Elsevier]
卷期号:51: 100670-100670
标识
DOI:10.1016/j.spasta.2022.100670
摘要

Analyzing population representative datasets for local level estimation and prediction purposes is important for monitoring public health, however, there are many statistical challenges associated with such analyses. Small area estimation (SAE) with post-stratified hierarchical mixed-effects models is a popular method for analysis. Post-stratification is a method that creates area-level predictions from a model fitting using sub-area-level covariates by incorporating auxiliary information (i.e., census data). While the post-stratification is an intuitive approach, the predictive benefits of post-stratification over standard methods with hierarchical mixed-effects models remain unclear. Another challenge for analyzing this type of data is the incorporation of sampling weights, as common data sources utilize complex sampling designs with uneven sampling probabilities. In addition, estimating the mean squared prediction error (MSPE) can be difficult via asymptotic theory due to the complex sampling designs and post-stratification process. Bootstrap methods can be an alternative, however there are many bootstrapping methods to choose from and their properties in realistic scenarios are unclear. In this paper, we compared the predictive ability of post-stratified and non-post-stratified estimators and evaluate the performance of various bootstrapping methods in estimating the MSPE with simulated data. Further, we compare the results using a population-based survey used to estimate the county-level prevalence of smoking in the state of South Carolina.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cccc完成签到,获得积分10
2秒前
英俊的铭应助南与晚霞采纳,获得10
5秒前
悄悄是心上的肖肖完成签到 ,获得积分10
10秒前
上官若男应助Lancer1034采纳,获得30
10秒前
淡定成风完成签到,获得积分10
19秒前
23秒前
26秒前
少盐发布了新的文献求助20
28秒前
28秒前
烟花应助英俊的雁易采纳,获得10
37秒前
甜蜜发带完成签到 ,获得积分10
38秒前
楠楠2001完成签到 ,获得积分10
44秒前
MasterZ完成签到 ,获得积分10
44秒前
完美的天空应助LYY采纳,获得10
44秒前
46秒前
mattino完成签到,获得积分20
54秒前
称心的语梦完成签到,获得积分10
56秒前
浅草发布了新的文献求助10
56秒前
冰糖秋梨膏完成签到 ,获得积分10
1分钟前
李健的小迷弟应助mattino采纳,获得10
1分钟前
Akim应助少盐采纳,获得10
1分钟前
1分钟前
1分钟前
zz完成签到 ,获得积分10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
饱满南霜发布了新的文献求助30
1分钟前
1分钟前
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
高震博完成签到 ,获得积分10
1分钟前
我是大兴发布了新的文献求助10
1分钟前
江城一霸完成签到,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314