Estimating confidence intervals for spatial hierarchical mixed-effects models with post-stratification

置信区间 统计 分层(种子) 多级模型 计量经济学 数学 生物 种子休眠 植物 发芽 休眠
作者
Hong Yuan,Bo Cai,Jan M. Eberth,Alexander C. McLain
出处
期刊:spatial statistics [Elsevier]
卷期号:51: 100670-100670
标识
DOI:10.1016/j.spasta.2022.100670
摘要

Analyzing population representative datasets for local level estimation and prediction purposes is important for monitoring public health, however, there are many statistical challenges associated with such analyses. Small area estimation (SAE) with post-stratified hierarchical mixed-effects models is a popular method for analysis. Post-stratification is a method that creates area-level predictions from a model fitting using sub-area-level covariates by incorporating auxiliary information (i.e., census data). While the post-stratification is an intuitive approach, the predictive benefits of post-stratification over standard methods with hierarchical mixed-effects models remain unclear. Another challenge for analyzing this type of data is the incorporation of sampling weights, as common data sources utilize complex sampling designs with uneven sampling probabilities. In addition, estimating the mean squared prediction error (MSPE) can be difficult via asymptotic theory due to the complex sampling designs and post-stratification process. Bootstrap methods can be an alternative, however there are many bootstrapping methods to choose from and their properties in realistic scenarios are unclear. In this paper, we compared the predictive ability of post-stratified and non-post-stratified estimators and evaluate the performance of various bootstrapping methods in estimating the MSPE with simulated data. Further, we compare the results using a population-based survey used to estimate the county-level prevalence of smoking in the state of South Carolina.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JWang发布了新的文献求助10
刚刚
1秒前
1秒前
LYM发布了新的文献求助10
2秒前
纸上彩虹完成签到 ,获得积分10
2秒前
调研昵称发布了新的文献求助10
2秒前
2秒前
rosy发布了新的文献求助10
2秒前
Ming完成签到,获得积分10
2秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
prosperp应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Enso完成签到 ,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
难过的翎应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
中级中级发布了新的文献求助10
4秒前
大个应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
丸子完成签到,获得积分10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
难过的翎应助科研通管家采纳,获得10
4秒前
飞快的语蕊完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
小蘑菇应助xqwwqx采纳,获得10
5秒前
情怀应助沙111采纳,获得10
5秒前
shelly0621发布了新的文献求助10
6秒前
顾暖完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678