Lightweight Memristive Neural Network for Gas Classification Based on Heterogeneous Strategy

记忆电阻器 神经形态工程学 计算机科学 软件部署 人工神经网络 实现(概率) 聚类分析 功率消耗 分布式计算 功率(物理) 人工智能 电子工程 工程类 数学 物理 统计 量子力学 操作系统
作者
Fan Sun,Jie Li,He Xiao,Shukai Duan,Xiaofang Hu
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:32 (07) 被引量:2
标识
DOI:10.1142/s0218127422501085
摘要

The memristive neuromorphic computing system (MNCS) can complete related calculations with lower power consumption and higher speed, which has attracted widespread attention. However, due to the limitations of memristor and circuit, the realization of MNCS faces many challenges. In this paper, we propose a heterogeneous deployment strategy for the MNCS and construct a lightweight heterogeneous memristive gas classification neural network (LHM-GSNN) based on the electronic nose (e-nose) application. In addition, the model parameters are quantified by clustering strategy to adapt to the nonideal characteristics of memristor. The experimental results show that the complex structure in the model is visibly simplified, and the number of parameters is correspondingly reduced using the heterogeneous deployment strategy. Furthermore, we also analyze the power consumption of the LHM-GSNN model deployed to the MNCS. This work may provide new solutions for constructing and implementing the MNCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FFFFFFF应助细腻沅采纳,获得10
刚刚
ym发布了新的文献求助10
刚刚
Yn完成签到 ,获得积分10
1秒前
1秒前
秋季完成签到,获得积分10
2秒前
wwb完成签到,获得积分10
2秒前
张自信完成签到,获得积分10
3秒前
华仔应助VDC采纳,获得10
3秒前
嘟嘟完成签到,获得积分10
4秒前
卡卡完成签到,获得积分10
4秒前
4秒前
十三发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
甩看文献发布了新的文献求助10
5秒前
wang完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
LONG完成签到,获得积分10
7秒前
7秒前
甜蜜秋蝶完成签到,获得积分10
7秒前
8秒前
TT发布了新的文献求助10
9秒前
啊实打实发布了新的文献求助10
9秒前
yam001发布了新的文献求助30
10秒前
Stanley完成签到,获得积分10
10秒前
LONG发布了新的文献求助10
10秒前
亮亮发布了新的文献求助50
10秒前
LZQ应助细心的小蜜蜂采纳,获得30
11秒前
艺玲发布了新的文献求助10
11秒前
小二郎应助Seven采纳,获得10
11秒前
设计狂魔完成签到,获得积分10
11秒前
11秒前
12秒前
韭黄发布了新的文献求助10
12秒前
科研小白完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762