已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs)

连接体 计算机科学 人类连接体项目 人工智能 概化理论 图形 深度学习 机器学习 模式识别(心理学) 神经科学 功能连接 心理学 理论计算机科学 发展心理学
作者
Jiadong Yan,Yuzhong Chen,Zhenxiang Xiao,Shu Zhang,Mingxin Jiang,Tianqi Wang,Tuo Zhang,Jinglei Lv,Benjamin Becker,Rong Zhang,Dajiang Zhu,Junwei Han,Dezhong Yao,Keith M. Kendrick,Tianming Liu,Xi Jiang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102518-102518 被引量:22
标识
DOI:10.1016/j.media.2022.102518
摘要

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘松发布了新的文献求助10
刚刚
1秒前
清爽难胜完成签到,获得积分10
4秒前
5秒前
Lucas应助凉白开采纳,获得20
5秒前
6秒前
wuhuofeng发布了新的文献求助10
8秒前
John发布了新的文献求助10
8秒前
与山发布了新的文献求助10
11秒前
12秒前
13秒前
cureall应助szmsnail采纳,获得10
18秒前
魏建威发布了新的文献求助10
18秒前
John完成签到,获得积分10
20秒前
vividkingking完成签到 ,获得积分10
20秒前
21秒前
情怀应助积极的铃铛采纳,获得10
21秒前
唐文硕发布了新的文献求助10
24秒前
24秒前
28秒前
29秒前
30秒前
李爱国应助唐文硕采纳,获得10
31秒前
32秒前
香蕉觅云应助lpp采纳,获得10
32秒前
搜集达人应助臻灏采纳,获得10
32秒前
阿宝完成签到,获得积分10
33秒前
大方明杰发布了新的文献求助10
34秒前
十七完成签到 ,获得积分10
37秒前
桐桐应助阿九采纳,获得10
39秒前
40秒前
香飘飘完成签到,获得积分10
40秒前
linkman发布了新的文献求助10
45秒前
臻灏完成签到,获得积分10
45秒前
46秒前
53秒前
田様应助轩轩采纳,获得10
54秒前
啊哈哈发布了新的文献求助10
56秒前
57秒前
稚久发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191