Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs)

连接体 计算机科学 人类连接体项目 人工智能 概化理论 图形 深度学习 机器学习 模式识别(心理学) 神经科学 功能连接 心理学 理论计算机科学 发展心理学
作者
Jiadong Yan,Yuzhong Chen,Zhenxiang Xiao,Shu Zhang,Mingxin Jiang,Tianqi Wang,Tuo Zhang,Jinglei Lv,Benjamin Becker,Rong Zhang,Dajiang Zhu,Junwei Han,Dezhong Yao,Keith M. Kendrick,Tianming Liu,Xi Jiang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102518-102518 被引量:19
标识
DOI:10.1016/j.media.2022.102518
摘要

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
特兰克斯发布了新的文献求助10
1秒前
危机的尔蝶完成签到,获得积分10
1秒前
mcsmdxs发布了新的文献求助10
2秒前
ccalvintan发布了新的文献求助10
2秒前
3秒前
3秒前
头发乱了发布了新的文献求助10
4秒前
天天快乐应助DrYang采纳,获得10
4秒前
含糊发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
完美世界应助幸福胡萝卜采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
7秒前
科目三应助Arnold采纳,获得10
7秒前
润润轩轩发布了新的文献求助10
8秒前
宗笑晴发布了新的文献求助10
8秒前
lucky完成签到,获得积分10
8秒前
糖糖发布了新的文献求助10
9秒前
9秒前
跳跃尔容完成签到,获得积分10
10秒前
wyblobin完成签到,获得积分10
10秒前
10秒前
11秒前
沉默沛岚完成签到,获得积分10
11秒前
丰知然应助宇文宛菡采纳,获得10
11秒前
所所应助tu采纳,获得30
12秒前
mechefy完成签到,获得积分10
12秒前
鲤鱼萧完成签到,获得积分10
13秒前
宗笑晴完成签到,获得积分10
13秒前
14秒前
小蘑菇应助头发乱了采纳,获得10
14秒前
代萌萌发布了新的文献求助10
15秒前
jucy发布了新的文献求助50
15秒前
15秒前
Lz完成签到,获得积分10
15秒前
Hello应助葛辉辉采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762