Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs)

连接体 计算机科学 人类连接体项目 人工智能 概化理论 图形 深度学习 机器学习 模式识别(心理学) 神经科学 功能连接 心理学 理论计算机科学 发展心理学
作者
Jiadong Yan,Yuzhong Chen,Zhenxiang Xiao,Shu Zhang,Mingxin Jiang,Tianqi Wang,Tuo Zhang,Jinglei Lv,Benjamin Becker,Rong Zhang,Dajiang Zhu,Junwei Han,Dezhong Yao,Keith M. Kendrick,Tianming Liu,Xi Jiang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102518-102518 被引量:22
标识
DOI:10.1016/j.media.2022.102518
摘要

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phil发布了新的文献求助10
刚刚
妮扣胖饥完成签到,获得积分10
刚刚
1秒前
郢都小镇发布了新的文献求助10
1秒前
黄婵完成签到,获得积分20
1秒前
SONGYEZI应助yinyin采纳,获得20
2秒前
科研通AI6应助zsh采纳,获得10
2秒前
hogluins发布了新的文献求助10
2秒前
柯北完成签到 ,获得积分20
2秒前
3秒前
3秒前
NexusExplorer应助快乐的鱼采纳,获得10
3秒前
WY发布了新的文献求助80
3秒前
善学以致用应助董小姐采纳,获得10
3秒前
4秒前
xxxxxx驳回了Dean应助
5秒前
6秒前
zhihuishu发布了新的文献求助10
6秒前
moumou完成签到,获得积分10
6秒前
VD完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
54zxy完成签到,获得积分10
6秒前
phil完成签到,获得积分10
7秒前
7秒前
zhang发布了新的文献求助10
8秒前
8秒前
sometime发布了新的文献求助10
9秒前
Beni发布了新的文献求助10
9秒前
科研通AI6应助sun采纳,获得10
9秒前
9秒前
CodeCraft应助忧心的不言采纳,获得10
10秒前
liuliu完成签到,获得积分10
10秒前
10秒前
李爱国应助默默的聪健采纳,获得10
10秒前
杨枝甘露完成签到 ,获得积分10
11秒前
11秒前
12秒前
leetaisan完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560119
求助须知:如何正确求助?哪些是违规求助? 3986390
关于积分的说明 12342454
捐赠科研通 3657013
什么是DOI,文献DOI怎么找? 2014682
邀请新用户注册赠送积分活动 1049457
科研通“疑难数据库(出版商)”最低求助积分说明 937756