Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs)

连接体 计算机科学 人类连接体项目 人工智能 概化理论 图形 深度学习 机器学习 模式识别(心理学) 神经科学 功能连接 心理学 理论计算机科学 发展心理学
作者
Jiadong Yan,Yuzhong Chen,Zhenxiang Xiao,Shu Zhang,Mingxin Jiang,Tianqi Wang,Tuo Zhang,Jinglei Lv,Benjamin Becker,Rong Zhang,Dajiang Zhu,Junwei Han,Dezhong Yao,Keith M. Kendrick,Tianming Liu,Xi Jiang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102518-102518 被引量:19
标识
DOI:10.1016/j.media.2022.102518
摘要

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林药师完成签到,获得积分10
刚刚
懵懂的土豆完成签到,获得积分10
刚刚
米兰的小铁匠完成签到,获得积分10
1秒前
史迪仔发布了新的文献求助10
1秒前
小蘑菇应助ccciii采纳,获得10
2秒前
2秒前
2秒前
情怀应助美好的千愁采纳,获得10
2秒前
3秒前
早起吃饱多运动完成签到 ,获得积分10
4秒前
4秒前
just完成签到,获得积分10
4秒前
我是老大应助Mannose采纳,获得10
7秒前
善学以致用应助hopen采纳,获得10
8秒前
英姑应助大林子采纳,获得10
8秒前
阳光海云应助燕知南采纳,获得10
8秒前
阳光海云应助秘密采纳,获得10
8秒前
SHAN发布了新的文献求助10
9秒前
aqiang完成签到,获得积分10
9秒前
傲娇的汽车完成签到,获得积分10
9秒前
fff发布了新的文献求助10
9秒前
李健的粉丝团团长应助chup采纳,获得10
10秒前
桐桐应助penghaha采纳,获得10
10秒前
11秒前
斯文败类应助辣鸡小王采纳,获得10
11秒前
田様应助一一采纳,获得10
11秒前
田様应助Snoopy_Swan采纳,获得10
11秒前
房东家的猫完成签到,获得积分10
12秒前
自由尔丝完成签到,获得积分10
12秒前
YESKY发布了新的文献求助10
13秒前
14秒前
14秒前
贰鸟应助s可采纳,获得20
14秒前
15秒前
哈好好哈哈好完成签到 ,获得积分10
16秒前
森眸应助迷路冰安采纳,获得10
16秒前
SHAN完成签到,获得积分10
17秒前
DYLAN_ZZ发布了新的文献求助10
17秒前
临在完成签到,获得积分10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905