恩帕吉菲
T细胞
免疫系统
细胞生物学
癌症研究
生物
化学
免疫学
内分泌学
2型糖尿病
糖尿病
作者
Jing Qin,Qiang Liu,Anli Liu,Shaoqiu Leng,Shuwen Wang,Chaoyang Li,Ji Ma,Jun Peng,Miao Xu
摘要
Immune thrombocytopenia (ITP) is an acquired autoimmune disease, in which the imbalance of CD4+ T cell subsets play a key role in the pathogenesis. Since T cells highly depend on metabolism for their function, we hypothesized that T cell dysfunction may be due to intracellular metabolic reprogramming. We found that in ITP, T cell metabolism shifts from oxidative phosphorylation to glycolysis. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor, has shown regulatory metabolic effects on proximal tubular epithelial cells and cardiac cells beyond glucose lowering. However, the effects of empagliflozin on T cells remain unknown. To further investigate the metabolic dysfunction of CD4+ T cells in ITP, we explored the effect of empagliflozin on CD4+ T-cell differentiation in ITP. Our results are the first to show that increased glycolysis in CD4+ T cells resulted in an unbalanced CD4+ T-cell population. Furthermore, empagliflozin can affect the differentiation of CD4+ T-cell subsets by inhibiting Th1 and Th17 cell populations while increasing Tregs. Empagliflozin appears to regulate CD4+ T cells through inhibiting the mTOR signal pathway. Considering these results, we propose that empagliflozin could be used as a potential therapeutic option for ITP by modulating metabolic reprogramming in CD4+ T cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI