Phase-Field Simulation and Machine Learning Study of the Effects of Elastic and Plastic Properties of Electrodes and Solid Polymer Electrolytes on the Suppression of Li Dendrite Growth

枝晶(数学) 材料科学 电解质 弹性模量 电极 复合材料 相(物质) 快离子导体 化学工程 纳米技术 几何学 化学 物理化学 有机化学 数学 工程类
作者
Yao Ren,Kena Zhang,Yue Zhou,Ye Cao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (27): 30658-30671 被引量:21
标识
DOI:10.1021/acsami.2c03000
摘要

Lithium (Li) dendrite growth in Li batteries is a long-standing problem, which causes critical safety concerns and severely limits the advancement of rechargeable Li batteries. Replacing a conventional liquid electrolyte with a solid electrolyte of high mechanical strength and rigidity has become a potential approach to inhibiting the Li dendrite growth. However, there still lacks an accurate understanding of the role of the mechanical properties of the metal electrode and the solid electrolyte in the Li dendrite growth. In this work, we develop a phase-field model coupled with the elastoplastic deformation to investigate the Li dendrite growth and its inhibition in the cell. Different mechanical properties, including the elastic modulus and the initial yield strength of both the metal electrode and the solid electrolyte, are explored to understand their independent roles in the inhibition of Li dendrite growth. High-throughput phase-field simulations are performed to establish a database of relationships between the aforementioned mechanical properties and the Li dendrite morphology, based on which a compressed-sensing machine learning model is trained to derive interpretable analytical correlations between the key material parameters and the dendrite morphology, as described by the dendrite length and area ratio. It is revealed that the Li dendrite can be effectively inhibited by electrolytes of high elastic moduli and initial yield strengths. Meanwhile, the role of the yield strength of the Li metal is also critical when the yield strength of the electrolyte becomes low. This work provides a fundamental understanding of the dendrite inhibition by mechanical suppression and demonstrates a computational data-driven methodology to potentially guide the electrode and electrolyte material selection for better inhibition of the dendrite growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于彦祖应助sekidesu采纳,获得80
刚刚
忆茶戏完成签到 ,获得积分10
刚刚
海人发布了新的文献求助10
刚刚
123456发布了新的文献求助10
1秒前
是是从i好IC和完成签到,获得积分10
1秒前
zeal发布了新的文献求助30
1秒前
1秒前
yeyeye完成签到,获得积分20
2秒前
2秒前
2秒前
奋斗尔安完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
科研通AI2S应助如意闭月采纳,获得10
4秒前
Ava应助专注钢笔采纳,获得10
4秒前
扣脚盟完成签到 ,获得积分10
5秒前
Owen应助高高的从波采纳,获得10
5秒前
研友_LX66qZ完成签到,获得积分10
5秒前
5秒前
5秒前
2112发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
清爽秋荷发布了新的文献求助10
6秒前
6秒前
6秒前
lishen完成签到,获得积分10
7秒前
万能图书馆应助姜姜采纳,获得10
7秒前
JamesPei应助vivi采纳,获得10
7秒前
北北完成签到 ,获得积分10
7秒前
Z1完成签到,获得积分10
7秒前
8464368完成签到,获得积分10
8秒前
TheBugsss完成签到,获得积分10
8秒前
www完成签到,获得积分10
8秒前
8秒前
悲凉的小蚂蚁完成签到,获得积分20
9秒前
wy.he应助ww采纳,获得10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391