分离器(采油)
材料科学
储能
化学工程
碳化
涂层
聚丙烯
锂(药物)
吸附
纳米技术
化学
有机化学
复合材料
医学
功率(物理)
物理
量子力学
内分泌学
工程类
热力学
作者
Fanxuan Xie,Man Xiong,Jiapeng Liu,Jingwen Qian,Tao Mei,Jinghua Li,Jianyin Wang,Li Yu,Jan P. Hofmann,Xianbao Wang
标识
DOI:10.1002/celc.202200474
摘要
Abstract Featuring high theoretical capacity, environmental friendliness and low cost, lithium‐sulfur (Li‐S) batteries become promising alternatives to satisfy the growing demand for energy storage. To boost their energy density for practical application, modified separators are needed to suppress shuttle effects resulting from the solubility of lithium polysulfides (LiPSs). Herein, we modified traditional polypropylene (PP) separators with functional WS 2 @C nanoflower composites (WS 2 @C‐PP). They can effectively adsorb LiPSs and catalyze their conversion on the edge sites of the WS 2 . Also, the unique construction of a carbon layer coating on the WS 2 nanoflowers combines active sites and conducting properties. The material benefits the reversibility of redox reactions and reutilization of active materials. With the WS 2 @C‐PP separator, the cell displays improved cycling stability and rate performance. When cycling at 0.1 C, the cell discharges a capacity of up to 1475 mAh g −1 , and it contributes 943 mAh g −1 originally at 1 C, with a decay rate of only 0.07 % after 500 cycles. Our work highlights the potential of functional separators to advance the properties of Li‐S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI