果胶
肝细胞癌
细胞毒性
核化学
抗氧化剂
肝癌
G2水电站
材料科学
DPPH
化学
生物化学
癌症研究
体外
生物
作者
Qiao Zhang,Wenyu Cui,Huiling Guo,Baoqing Wang,He Wang,Jimei Zhang,Wenlan Li
标识
DOI:10.1080/17458080.2022.2063279
摘要
This work described the one-pot synthesis of orange pectin encapsulated Fe3O4 nanoparticles (Fe3O4@Pectin NPs) which is prepared by co-precipitation of Fe(II/(III) ions in alkaline solution mediated by pectin. This process led to formation of magnetic nanoparticles within the network of pectin. Physicochemical characterization of the as-synthesized Fe3O4@Pectin NPs was carried out through Fourier transformed infrared spectroscopy (FT-IR), electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The in vitro cytotoxic and anti-liver cancer effects of biologically synthesized Fe3O4@Pectin NPs against pleomorphic hepatocellular carcinoma (SNU-387), hepatic ductal carcinoma (LMH/2A), morris hepatoma (McA-RH7777), and novikoff hepatoma (N1-S1 Fudr) cancer cell lines were assessed. The anti-liver cancer properties of the Fe3O4@Pectin NPs could significantly remove pleomorphic hepatocellular carcinoma (SNU-387), hepatic ductal carcinoma (LMH/2A), morris hepatoma (McA-RH7777), and novikoff hepatoma (N1-S1 Fudr) cancer cell lines in a time and concentration-dependent manner by MTT assay. The IC50 of the Fe3O4@Pectin NPs were 8, 13, 10, and 7 µg/mL against pleomorphic hepatocellular carcinoma (SNU-387), hepatic ductal carcinoma (LMH/2A), morris hepatoma (McA-RH7777), and novikoff hepatoma (N1-S1 Fudr) cancer cell lines. The antioxidant activity of Fe3O4@Pectin NPs was determined by DPPH method. The Fe3O4@Pectin NPs showed the high antioxidant activity according to the IC50 value. It seems that the anti-human liver cancer effect of recent nanoparticles is due to their antioxidant effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI