摩擦电效应
材料科学
接触带电
纳米发生器
聚偏氟乙烯
静电感应
复合数
纳米技术
能量收集
光电子学
电气工程
功率(物理)
复合材料
电极
压电
工程类
物理
聚合物
量子力学
作者
Wanglin Zhang,Yanxu Lu,Tao Liu,Jiamin Zhao,Yanhua Liu,Qiu Fu,Jilong Mo,Chenchen Cai,Shuangxi Nie
出处
期刊:Small
[Wiley]
日期:2022-05-19
卷期号:18 (25)
被引量:52
标识
DOI:10.1002/smll.202200577
摘要
Non-contact mode triboelectric nanogenerators effectively avoid physical contact between two triboelectric materials and achieve long-term reliable operation, providing broad application prospects in the field of self-powered sensing. However, the low surface charge density of triboelectric materials restricts application of contactless sensing. Herein, by controlling Rayleigh Instability deformation of the spinning jet and vapor-induced phase separation during electrostatic spinning, a polyvinylidene fluoride@Mxene (Ti3 C2 Tx ) composite film with spheres multiple physical network structures is prepared and utilized as the triboelectric material of a self-powered contactless sensor. The structure of the composite film and high conductivity of Ti3 C2 Tx provide triboelectric materials with high output performance (charge output and power output up to 128 µC m-2 and 200 µW cm-2 at 2 Hz) and high output stability. The self-powered contactless sensor shows excellent speed sensitivity (1.175 Vs m-1 ). Additionally, it could accurately identify the motion states such as running (55 mV), jumping (105 mV), and walking (40 mV) within the range of 70 cm, and present the signals in different pop forms. This work lays a solid foundation for the development and application of high-performance triboelectric materials, and has guiding significance for the research of self-powered contactless sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI