过电位
电催化剂
双功能
分解水
析氧
催化作用
纳米材料
材料科学
层状结构
堆积
三元运算
化学工程
电解水
纳米技术
化学
电解
电化学
电极
电解质
有机化学
物理化学
光催化
复合材料
计算机科学
工程类
程序设计语言
作者
Zixi Lyu,Xue Zhang,Xinyan Liao,Kai Liu,Hongpu Huang,Junlin Cai,Qin Kuang,Zhaoxiong Xie,Shuifen Xie
标识
DOI:10.1021/acscatal.2c00859
摘要
Orderly assembled supernanosheets (ASNSs), integrating the architectural features of subunit NSs, 2D subnanometer interlayer spacings, and multiple electroactive sites, can remarkably expand the functionality and stability of 2D multimetallic nanomaterials. Here, we report a versatile template-directed strategy for synthesizing multimetallic ASNSs. As a proof-of-concept, ternary Pd44Pt30Ir26 ASNSs are elaborately synthesized and applied as robust bifunctional electrocatalysts toward overall water splitting. The products are mesocrystalline 2D superstructures derived from lamellar stacking of ultrathin Pd–Pt–Ir NSs. During electrocatalysis, the multilayered superstructures can locally concentrate reactants within the parallel subnanometer interlayer spacings and essentially intensify the morphological stability. Featured with electronically modulated Pt–IrOx dual active sites, the products exhibit high efficiency and durable bifunctional electrocatalytic activity for overall water splitting in 1.0 M KOH, presenting 46 and 92 mV lower overpotential than the state-of-the-art Pt/C and Ir/C for hydrogen evolution and oxygen evolution reactions, respectively. Significantly, they can realize stable H2 production at a large current of 500 mA in an anion exchange membrane electrolyzer. This work fully proves that the integration of an ordered 2D superstructure and electronic-modulated multiple reactive sites has broad prospects for advanced electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI