Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China

医学 脑炎 接收机工作特性 改良兰金量表 流体衰减反转恢复 无线电技术 内科学 曲线下面积 自身免疫性脑炎 磁共振成像 机器学习 肿瘤科 核医学 放射科 免疫学 病毒 计算机科学 缺血 缺血性中风
作者
Yayun Xiang,Xiaoxuan Dong,Chun Zeng,Junhang Liu,Hanjing Liu,Xiaofei Hu,Jinzhou Feng,Silin Du,Jingjie Wang,Yi Han,Qiang Luo,Shanxiong Chen,Yongmei Li
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:1
标识
DOI:10.3389/fimmu.2022.913703
摘要

To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients' prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0-2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant).The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies.The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王灿灿发布了新的文献求助10
1秒前
cxr1010完成签到,获得积分10
2秒前
hellojwx完成签到,获得积分10
2秒前
一叶知秋完成签到,获得积分10
2秒前
huan完成签到 ,获得积分10
2秒前
研友_Zl1Da8完成签到,获得积分10
2秒前
3秒前
eeeeee完成签到 ,获得积分10
3秒前
wx完成签到,获得积分10
3秒前
Hettl完成签到,获得积分10
3秒前
槐序零玖发布了新的文献求助10
4秒前
科目三应助碧蓝可乐采纳,获得10
4秒前
anna1992发布了新的文献求助10
4秒前
SciGPT应助阜睿采纳,获得10
5秒前
风趣夜云完成签到,获得积分10
5秒前
周周南发布了新的文献求助10
5秒前
灵巧的一笑完成签到,获得积分10
6秒前
sisyphus完成签到,获得积分10
6秒前
土豪的冰蓝完成签到,获得积分10
6秒前
和成完成签到,获得积分10
7秒前
Akim应助02采纳,获得10
7秒前
高兴的半仙完成签到,获得积分10
8秒前
gaohar发布了新的文献求助10
8秒前
8秒前
彭于晏完成签到,获得积分0
8秒前
wennyzh完成签到,获得积分10
9秒前
9秒前
9秒前
梅溪湖的提词器完成签到,获得积分10
10秒前
Hettl发布了新的文献求助10
10秒前
大模型应助松亚采纳,获得10
10秒前
吕广德完成签到,获得积分10
10秒前
英俊的铭应助zz采纳,获得10
10秒前
科研通AI2S应助唐妮采纳,获得10
10秒前
薄荷蓝完成签到,获得积分10
11秒前
11秒前
11秒前
小海贼完成签到 ,获得积分10
11秒前
秋秋发布了新的文献求助10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386