Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China

医学 脑炎 接收机工作特性 改良兰金量表 流体衰减反转恢复 无线电技术 内科学 曲线下面积 自身免疫性脑炎 磁共振成像 机器学习 肿瘤科 核医学 放射科 免疫学 病毒 计算机科学 缺血 缺血性中风
作者
Yayun Xiang,Xiaoxuan Dong,Chun Zeng,Junhang Liu,Hanjing Liu,Xiaofei Hu,Jinzhou Feng,Silin Du,Jingjie Wang,Yi Han,Qiang Luo,Shanxiong Chen,Yongmei Li
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:1
标识
DOI:10.3389/fimmu.2022.913703
摘要

To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients' prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0-2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant).The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies.The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助博修采纳,获得30
1秒前
SciGPT应助LQ采纳,获得10
1秒前
阚曦发布了新的文献求助10
3秒前
香妃完成签到,获得积分10
3秒前
魔幻慕梅完成签到,获得积分10
3秒前
去2完成签到 ,获得积分10
4秒前
6秒前
wanci应助才哥采纳,获得10
6秒前
9秒前
10秒前
11秒前
13秒前
笑笑发布了新的文献求助100
14秒前
15秒前
爆米花应助Pt-SACs采纳,获得10
16秒前
梦丽有人完成签到,获得积分10
16秒前
欢喜妙梦完成签到,获得积分20
18秒前
烟花应助清歌浊酒采纳,获得10
19秒前
博修发布了新的文献求助30
19秒前
22秒前
Jero完成签到,获得积分10
22秒前
李健应助sky采纳,获得10
24秒前
打打应助邵洋采纳,获得10
24秒前
CAOHOU应助望江饮月采纳,获得10
25秒前
思源应助欣喜蘑菇采纳,获得10
26秒前
Pt-SACs发布了新的文献求助10
27秒前
27秒前
yeye完成签到 ,获得积分10
29秒前
wintersss完成签到,获得积分10
29秒前
29秒前
直率铁身完成签到,获得积分10
31秒前
清歌浊酒发布了新的文献求助10
32秒前
田様应助开朗曲奇采纳,获得10
33秒前
Ava应助博修采纳,获得10
33秒前
欢喜妙梦关注了科研通微信公众号
36秒前
38秒前
38秒前
42秒前
43秒前
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382