Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China

医学 脑炎 接收机工作特性 改良兰金量表 流体衰减反转恢复 无线电技术 内科学 曲线下面积 自身免疫性脑炎 磁共振成像 机器学习 肿瘤科 核医学 放射科 免疫学 病毒 计算机科学 缺血 缺血性中风
作者
Yayun Xiang,Xiaoxuan Dong,Chun Zeng,Junhang Liu,Hanjing Liu,Xiaofei Hu,Jinzhou Feng,Silin Du,Jingjie Wang,Yi Han,Qiang Luo,Shanxiong Chen,Yongmei Li
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:1
标识
DOI:10.3389/fimmu.2022.913703
摘要

To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients' prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0-2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant).The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies.The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天完成签到,获得积分10
刚刚
英俊的铭应助万事顺意采纳,获得10
刚刚
Ava应助ferry123采纳,获得10
刚刚
瞌瞌完成签到,获得积分10
刚刚
lalaland完成签到,获得积分10
1秒前
1秒前
爱笑的香寒完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
LXY完成签到,获得积分10
2秒前
空白完成签到,获得积分10
2秒前
浊酒完成签到,获得积分20
3秒前
4秒前
yezhi完成签到,获得积分10
4秒前
Owen应助孙伟健采纳,获得10
4秒前
科研通AI6应助哭泣的灵寒采纳,获得10
4秒前
小白完成签到,获得积分10
5秒前
5秒前
怡然的梦之完成签到,获得积分10
5秒前
好想吃豆腐脑完成签到,获得积分10
6秒前
深情安青应助ww采纳,获得10
6秒前
6秒前
画画完成签到,获得积分20
6秒前
小马甲应助快乐乐松采纳,获得10
6秒前
小叮当完成签到,获得积分10
7秒前
土星发布了新的文献求助10
7秒前
SciGPT应助黎黎采纳,获得10
7秒前
hyh发布了新的文献求助10
8秒前
renwoxing完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Foalphaz发布了新的文献求助10
9秒前
9秒前
大模型应助耍酷破茧采纳,获得10
10秒前
粗心的采文完成签到 ,获得积分10
10秒前
HOAN应助li采纳,获得20
10秒前
量子星尘发布了新的文献求助10
11秒前
DDD完成签到,获得积分10
11秒前
搜集达人应助kunnao采纳,获得10
11秒前
传奇3应助crazzzzzy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586