已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China

医学 脑炎 接收机工作特性 改良兰金量表 流体衰减反转恢复 无线电技术 内科学 曲线下面积 自身免疫性脑炎 磁共振成像 机器学习 肿瘤科 核医学 放射科 免疫学 病毒 计算机科学 缺血 缺血性中风
作者
Yayun Xiang,Xiaoxuan Dong,Chun Zeng,Junhang Liu,Hanjing Liu,Xiaofei Hu,Jinzhou Feng,Silin Du,Jingjie Wang,Yi Han,Qiang Luo,Shanxiong Chen,Yongmei Li
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:1
标识
DOI:10.3389/fimmu.2022.913703
摘要

To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients' prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0-2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant).The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies.The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasmine完成签到,获得积分10
刚刚
1秒前
高铭泽完成签到,获得积分10
2秒前
火神杯完成签到,获得积分10
2秒前
斯文败类应助hellogene采纳,获得10
2秒前
3秒前
Geass发布了新的文献求助10
4秒前
沉静乾完成签到,获得积分10
4秒前
高铭泽发布了新的文献求助10
6秒前
仵一完成签到,获得积分10
7秒前
科研通AI6应助火神杯采纳,获得10
7秒前
8秒前
8秒前
六书院完成签到,获得积分10
12秒前
12秒前
Dr_J完成签到,获得积分10
13秒前
13秒前
端庄洪纲完成签到 ,获得积分10
14秒前
Jason完成签到 ,获得积分10
15秒前
小李同学发布了新的文献求助10
16秒前
曲淳发布了新的文献求助10
17秒前
lx完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
18秒前
19秒前
weibo完成签到,获得积分10
21秒前
英姑应助聪聪great采纳,获得10
24秒前
RWcreator完成签到 ,获得积分10
24秒前
橘子柚子完成签到 ,获得积分10
25秒前
DocM完成签到 ,获得积分10
26秒前
大包鸡完成签到 ,获得积分10
26秒前
Lester完成签到 ,获得积分10
26秒前
所所应助高铭泽采纳,获得10
28秒前
丘比特应助高铭泽采纳,获得10
28秒前
大模型应助高铭泽采纳,获得10
28秒前
汉堡包应助高铭泽采纳,获得10
28秒前
小马甲应助高铭泽采纳,获得10
28秒前
欧皇完成签到,获得积分20
30秒前
欧皇发布了新的文献求助50
31秒前
Lucas应助哆啦小奶龙采纳,获得10
32秒前
boldhammer完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504