亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A supervised case-based reasoning approach for explainable thyroid nodule diagnosis

计算机科学 结核(地质) 甲状腺结节 人工智能 基于案例的推理 甲状腺 自然语言处理 医学 内科学 生物 古生物学
作者
Che Xu,Weiyong Liu,Yushu Chen,Xiaoyi Ding
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109200-109200 被引量:11
标识
DOI:10.1016/j.knosys.2022.109200
摘要

As an explainable experience-based artificial intelligence technique, case-based reasoning (CBR) has been widely used to help diagnose many diseases, but the application of CBR in the diagnosis of thyroid nodules (TDNs) is rarely studied. To fill this research gap, this paper proposes a supervised CBR approach to help diagnose TDNs. The proposed approach first investigates the correlation between the feature diagnoses of historical TDN cases and the corresponding overall diagnoses using the canonical correlation analysis technique. Then the learned canonical variables are used to reconstruct TDN cases. Based on the reconstructed historical case base, a classifier is constructed to provide pathological diagnosis predictions for new TDN cases. To explain these predictions with similar historical TDN cases, a convex optimization model is constructed to determine the similarity between historical TDN cases and new TDN cases. Finally, a weighted combination scheme is designed to generate an explainable pathological diagnosis for each new TDN case based on its similar historical TDN cases. The proposed approach not only avoids the burdensome parameter tuning task but also reduces the likelihood of retrieving noisy historical cases as similar cases of new cases with a supervised case retrieval process. Using a real diagnostic dataset collected from the ultrasound department of a local hospital, the effectiveness of the proposed approach in diagnosing TDNs is validated and its advantages are further highlighted by comparison with the traditional CBR approach and six mainstream machine learning models. • A supervised case-based approach (CBR) is proposed for explainable diagnosis of thyroid nodules. • Both case features and case solutions are considered to determine the similarity between different cases. • Predictions of unexplainable machine learning models are explained using similar historical cases. • The proposed approach is compared with traditional CBR approach and mainstream machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
科研顺发布了新的文献求助10
24秒前
orixero应助科研顺采纳,获得10
35秒前
37秒前
40秒前
向日葵发布了新的文献求助10
42秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
1分钟前
向日葵完成签到,获得积分10
1分钟前
丁老三完成签到 ,获得积分10
1分钟前
浮游应助徐露辰采纳,获得10
1分钟前
1分钟前
Cynthia完成签到 ,获得积分10
1分钟前
幽默尔蓝发布了新的文献求助10
1分钟前
下雨天就该睡大觉完成签到 ,获得积分10
1分钟前
2分钟前
aa111发布了新的文献求助10
2分钟前
yanglinhai完成签到 ,获得积分10
2分钟前
2分钟前
aa111完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
矮冬瓜完成签到 ,获得积分10
3分钟前
luxlili完成签到,获得积分10
3分钟前
4分钟前
秋作完成签到,获得积分10
4分钟前
我爱陶子完成签到 ,获得积分10
4分钟前
4分钟前
为你钟情完成签到 ,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463273
求助须知:如何正确求助?哪些是违规求助? 4568033
关于积分的说明 14312341
捐赠科研通 4493928
什么是DOI,文献DOI怎么找? 2461987
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184