A supervised case-based reasoning approach for explainable thyroid nodule diagnosis

计算机科学 结核(地质) 甲状腺结节 人工智能 基于案例的推理 甲状腺 自然语言处理 医学 内科学 生物 古生物学
作者
Che Xu,Weiyong Liu,Yushu Chen,Xiaoyi Ding
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109200-109200 被引量:11
标识
DOI:10.1016/j.knosys.2022.109200
摘要

As an explainable experience-based artificial intelligence technique, case-based reasoning (CBR) has been widely used to help diagnose many diseases, but the application of CBR in the diagnosis of thyroid nodules (TDNs) is rarely studied. To fill this research gap, this paper proposes a supervised CBR approach to help diagnose TDNs. The proposed approach first investigates the correlation between the feature diagnoses of historical TDN cases and the corresponding overall diagnoses using the canonical correlation analysis technique. Then the learned canonical variables are used to reconstruct TDN cases. Based on the reconstructed historical case base, a classifier is constructed to provide pathological diagnosis predictions for new TDN cases. To explain these predictions with similar historical TDN cases, a convex optimization model is constructed to determine the similarity between historical TDN cases and new TDN cases. Finally, a weighted combination scheme is designed to generate an explainable pathological diagnosis for each new TDN case based on its similar historical TDN cases. The proposed approach not only avoids the burdensome parameter tuning task but also reduces the likelihood of retrieving noisy historical cases as similar cases of new cases with a supervised case retrieval process. Using a real diagnostic dataset collected from the ultrasound department of a local hospital, the effectiveness of the proposed approach in diagnosing TDNs is validated and its advantages are further highlighted by comparison with the traditional CBR approach and six mainstream machine learning models. • A supervised case-based approach (CBR) is proposed for explainable diagnosis of thyroid nodules. • Both case features and case solutions are considered to determine the similarity between different cases. • Predictions of unexplainable machine learning models are explained using similar historical cases. • The proposed approach is compared with traditional CBR approach and mainstream machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木马病毒发布了新的文献求助10
刚刚
刚刚
gcy完成签到 ,获得积分10
1秒前
1秒前
1秒前
月亮完成签到 ,获得积分10
1秒前
深情安青应助王治清采纳,获得10
4秒前
zhaoli完成签到 ,获得积分10
4秒前
Ooo完成签到,获得积分20
5秒前
小饼干发布了新的文献求助10
6秒前
白华苍松发布了新的文献求助10
7秒前
Ooo发布了新的文献求助20
7秒前
7秒前
8秒前
9秒前
思维发布了新的文献求助10
9秒前
mofarah发布了新的文献求助10
9秒前
故事的小红花完成签到,获得积分10
10秒前
光年发布了新的文献求助10
12秒前
Hrentiken完成签到,获得积分10
12秒前
初空月儿发布了新的文献求助10
12秒前
DDDDD发布了新的文献求助10
13秒前
13秒前
顺心的卿完成签到,获得积分10
14秒前
上帝发誓完成签到,获得积分10
14秒前
调皮烧鹅发布了新的文献求助10
15秒前
今后应助王治清采纳,获得10
15秒前
17秒前
shengge发布了新的文献求助10
19秒前
mofarah完成签到,获得积分20
20秒前
23秒前
初空月儿完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
27秒前
哈哈哈哈完成签到,获得积分10
27秒前
伶俜完成签到,获得积分0
27秒前
suan发布了新的文献求助30
27秒前
shengge完成签到,获得积分10
28秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388