A supervised case-based reasoning approach for explainable thyroid nodule diagnosis

计算机科学 结核(地质) 甲状腺结节 人工智能 基于案例的推理 甲状腺 自然语言处理 医学 内科学 生物 古生物学
作者
Che Xu,Weiyong Liu,Yushu Chen,Xiaoyi Ding
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109200-109200 被引量:11
标识
DOI:10.1016/j.knosys.2022.109200
摘要

As an explainable experience-based artificial intelligence technique, case-based reasoning (CBR) has been widely used to help diagnose many diseases, but the application of CBR in the diagnosis of thyroid nodules (TDNs) is rarely studied. To fill this research gap, this paper proposes a supervised CBR approach to help diagnose TDNs. The proposed approach first investigates the correlation between the feature diagnoses of historical TDN cases and the corresponding overall diagnoses using the canonical correlation analysis technique. Then the learned canonical variables are used to reconstruct TDN cases. Based on the reconstructed historical case base, a classifier is constructed to provide pathological diagnosis predictions for new TDN cases. To explain these predictions with similar historical TDN cases, a convex optimization model is constructed to determine the similarity between historical TDN cases and new TDN cases. Finally, a weighted combination scheme is designed to generate an explainable pathological diagnosis for each new TDN case based on its similar historical TDN cases. The proposed approach not only avoids the burdensome parameter tuning task but also reduces the likelihood of retrieving noisy historical cases as similar cases of new cases with a supervised case retrieval process. Using a real diagnostic dataset collected from the ultrasound department of a local hospital, the effectiveness of the proposed approach in diagnosing TDNs is validated and its advantages are further highlighted by comparison with the traditional CBR approach and six mainstream machine learning models. • A supervised case-based approach (CBR) is proposed for explainable diagnosis of thyroid nodules. • Both case features and case solutions are considered to determine the similarity between different cases. • Predictions of unexplainable machine learning models are explained using similar historical cases. • The proposed approach is compared with traditional CBR approach and mainstream machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikun完成签到,获得积分20
1秒前
碧蓝老虎完成签到,获得积分10
1秒前
2秒前
汉堡包应助勤劳绿毛龟采纳,获得10
2秒前
Lucas应助勤劳绿毛龟采纳,获得10
2秒前
NexusExplorer应助勤劳绿毛龟采纳,获得10
2秒前
刘二狗完成签到,获得积分10
2秒前
英姑应助勤劳绿毛龟采纳,获得10
2秒前
共享精神应助勤劳绿毛龟采纳,获得10
2秒前
科目三应助勤劳绿毛龟采纳,获得10
2秒前
Max完成签到,获得积分10
2秒前
烟花应助勤劳绿毛龟采纳,获得10
2秒前
情怀应助勤劳绿毛龟采纳,获得10
2秒前
在水一方应助勤劳绿毛龟采纳,获得10
2秒前
Orange应助勤劳绿毛龟采纳,获得10
2秒前
哈哈发布了新的文献求助10
4秒前
clyhg完成签到,获得积分10
4秒前
5秒前
tyx发布了新的文献求助10
5秒前
快乐的胖子应助ikun采纳,获得20
7秒前
小鱼儿发布了新的文献求助10
7秒前
xifanfan完成签到,获得积分10
8秒前
科研通AI5应助Linson采纳,获得10
8秒前
水木完成签到 ,获得积分10
9秒前
wenwenerya完成签到,获得积分20
9秒前
9秒前
YQP完成签到 ,获得积分10
10秒前
CHEN__02_完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助ncc采纳,获得10
11秒前
SYLH应助fredxjx采纳,获得10
11秒前
开心的章鱼哥完成签到,获得积分10
12秒前
和谐幻柏发布了新的文献求助20
12秒前
JamesPei应助tyx采纳,获得10
13秒前
14秒前
14秒前
可爱的函函应助6260采纳,获得10
14秒前
李健应助勤劳绿毛龟采纳,获得10
15秒前
英俊的铭应助勤劳绿毛龟采纳,获得10
15秒前
慕青应助勤劳绿毛龟采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420