鲁米诺
电化学发光
化学
光化学
阴极保护
激进的
电化学
化学发光
无机化学
检出限
电极
有机化学
色谱法
物理化学
作者
Wenling Gu,Xiaosi Wang,Mengzhen Xi,Xiaoqian Wei,Lei Jiao,Ying Qin,Jiajia Huang,Xiaoqiang Cui,Lirong Zheng,Liuyong Hu,Chengzhou Zhu
标识
DOI:10.1021/acs.analchem.2c01794
摘要
The conventional cathodic electrochemiluminescence (ECL) always requires a more negative potential to trigger strong emission, which inevitably damages the bioactivity of targets and decreases the sensitivity and specificity. In this work, iron single-atom catalysts (Fe–N–C SACs) were employed as an efficient co-reaction accelerator for the first time to achieve the impressively cathodic emission of a luminol–H2O2 ECL system at an ultralow potential. Benefiting from the distinct electronic structure, Fe–N–C SACs exhibit remarkable properties for the activation of H2O2 to produce massive reactive oxygen species (ROS) under a negative scanning potential from 0 to −0.2 V. The ROS can oxidize the luminol anions into luminol anion radicals, avoiding the tedious electrochemical oxidation process of luminol. Then, the in situ-formed luminol anion radicals will directly react with ROS for the strong ECL emission. As a proof of concept, sensitive detection of the carcinoembryonic antigen was realized by glucose oxidase-mediated ECL immunoassay, shedding light on the superiority of SACs to construct efficient cathodic ECL systems with low triggering potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI