ZAK (sterile alpha motif and leucine zipper-containing kinase) is a newly discovered member of the subfamily of mitogen-activated protein kinase kinase kinases (MAP3Ks). The role of ZAK in kidney disease remains largely unknown. In this study, we systematically investigated the expression and function of ZAK in the progression of tubulointerstitial fibrosis (TIF). ZAK was induced, predominantly in tubular epithelium, in both fibrotic kidneys of human and mouse models with TIF. ZAK expression level was correlated with the extent of renal fibrosis and the decline of eGFR of CKD patients. Depleting ZAK attenuated TIF and inflammation induced by unilateral ureteral occlusion (UUO) together with decreased activation of p38 MAPK and Smads signaling. Moreover, we demonstrated that overexpressed ZAK was in complex with Smad2/3 and TGF-β receptor Ⅰ (TβRI). Whereas, silencing endogenous ZAK ameliorated the amount of Smad2/3 recruited to TβRI. Moreover, we discovered a novel small molecule inhibitor of ZAK, named 6p. In vitro, incubation with 6p inhibited TGF-β1-induced fibrogenic response in NRK52E cells. In vivo, intragastric administration of 6p ameliorated TIF and inflammation in UUO and unilateral ischemia-reperfusion injury model. Delayed administration of 6p was also effective in retarding the progression of the established TIF. In conclusion, ZAK is a novel therapeutic target for TIF, and 6p might be a potential therapeutic agent for TIF.