甘露聚糖
生物
海洋真菌
糖苷水解酶
生物化学
阿尔法(金融)
多糖
植物
酶
医学
护理部
结构效度
患者满意度
作者
Vipul Solanki,Karen Krüger,C. Crawford,A. Pardo,José Danglad‐Flores,Kim L. Hoang,Leeann Klassen,D. Wade Abbott,Peter H. Seeberger,Rudolf Amann,Hanno Teeling,Jan‐Hendrik Hehemann
出处
期刊:The ISME Journal
[Springer Nature]
日期:2022-04-12
卷期号:16 (7): 1818-1830
被引量:14
标识
DOI:10.1038/s41396-022-01223-w
摘要
Abstract Microbial glycan degradation is essential to global carbon cycling. The marine bacterium Salegentibacter sp. Hel_I_6 (Bacteroidota) isolated from seawater off Helgoland island (North Sea) contains an α-mannan inducible gene cluster with a GH76 family endo-α-1,6-mannanase (ShGH76). This cluster is related to genetic loci employed by human gut bacteria to digest fungal α-mannan. Metagenomes from the Hel_I_6 isolation site revealed increasing GH76 gene frequencies in free-living bacteria during microalgae blooms, suggesting degradation of α-1,6-mannans from fungi. Recombinant ShGH76 protein activity assays with yeast α-mannan and synthetic oligomannans showed endo-α-1,6-mannanase activity. Resolved structures of apo-ShGH76 (2.0 Å) and of mutants co-crystalized with fungal mannan-mimicking α-1,6-mannotetrose (1.90 Å) and α-1,6-mannotriose (1.47 Å) retained the canonical (α/α)6 fold, despite low identities with sequences of known GH76 structures (GH76s from gut bacteria: <27%). The apo-form active site differed from those known from gut bacteria, and co-crystallizations revealed a kinked oligomannan conformation. Co-crystallizations also revealed precise molecular-scale interactions of ShGH76 with fungal mannan-mimicking oligomannans, indicating adaptation to this particular type of substrate. Our data hence suggest presence of yet unknown fungal α-1,6-mannans in marine ecosystems, in particular during microalgal blooms.
科研通智能强力驱动
Strongly Powered by AbleSci AI