Performance of Coefficient Alpha and Its Alternatives: Effects of Different Types of Non-Normality

正态性 统计 数学 顺序量表 欧米茄 正态分布 比例(比率) 计量经济学 物理 量子力学
作者
Leifeng Xiao,Kit‐Tai Hau
出处
期刊:Educational and Psychological Measurement [SAGE Publishing]
卷期号:83 (1): 5-27 被引量:8
标识
DOI:10.1177/00131644221088240
摘要

We examined the performance of coefficient alpha and its potential competitors (ordinal alpha, omega total, Revelle's omega total [omega RT], omega hierarchical [omega h], greatest lower bound [GLB], and coefficient H) with continuous and discrete data having different types of non-normality. Results showed the estimation bias was acceptable for continuous data with varying degrees of non-normality when the scales were strong (high loadings). This bias, however, became quite large with moderate strength scales and increased with increasing non-normality. For Likert-type scales, other than omega h, most indices were acceptable with non-normal data having at least four points, and more points were better. For different exponential distributed data, omega RT and GLB were robust, whereas the bias of other indices for binomial-beta distribution was generally large. An examination of an authentic large-scale international survey suggested that its items were at worst moderately non-normal; hence, non-normality was not a big concern. We recommend (a) the demand for continuous and normally distributed data for alpha may not be necessary for less severely non-normal data; (b) for severely non-normal data, we should have at least four scale points, and more points are better; and (c) there is no single golden standard for all data types, other issues such as scale loading, model structure, or scale length are also important.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的盼夏完成签到,获得积分10
刚刚
单薄茗完成签到,获得积分10
1秒前
1秒前
科研通AI6应助木棉哆哆采纳,获得10
1秒前
雪凝清霜发布了新的文献求助10
1秒前
2秒前
刘稀完成签到,获得积分10
2秒前
miaomiao完成签到,获得积分10
3秒前
陆菱柒发布了新的文献求助10
3秒前
3秒前
阔达的金鱼完成签到,获得积分10
3秒前
是我完成签到,获得积分10
3秒前
iuuu发布了新的文献求助10
4秒前
lhy发布了新的文献求助10
4秒前
5秒前
Lily完成签到,获得积分10
5秒前
5秒前
彭半梦完成签到,获得积分10
5秒前
6秒前
易晨曦发布了新的文献求助10
6秒前
聪明的可愁完成签到,获得积分10
6秒前
核桃发布了新的文献求助10
6秒前
6秒前
wanci应助xzh采纳,获得10
6秒前
LY完成签到 ,获得积分10
7秒前
单薄的尔烟完成签到 ,获得积分10
7秒前
7秒前
8秒前
可爱的函函应助CA737采纳,获得10
8秒前
研友_VZG7GZ应助香香香采纳,获得10
8秒前
zSmart发布了新的文献求助10
8秒前
漂亮豁完成签到,获得积分10
9秒前
妮妮完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
yznfly应助domingo采纳,获得30
11秒前
renxuda完成签到,获得积分10
11秒前
TZZZ发布了新的文献求助10
12秒前
卢大赛完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598