Performance of Coefficient Alpha and Its Alternatives: Effects of Different Types of Non-Normality

正态性 统计 数学 顺序量表 欧米茄 正态分布 比例(比率) 计量经济学 物理 量子力学
作者
Leifeng Xiao,Kit‐Tai Hau
出处
期刊:Educational and Psychological Measurement [SAGE]
卷期号:83 (1): 5-27 被引量:8
标识
DOI:10.1177/00131644221088240
摘要

We examined the performance of coefficient alpha and its potential competitors (ordinal alpha, omega total, Revelle's omega total [omega RT], omega hierarchical [omega h], greatest lower bound [GLB], and coefficient H) with continuous and discrete data having different types of non-normality. Results showed the estimation bias was acceptable for continuous data with varying degrees of non-normality when the scales were strong (high loadings). This bias, however, became quite large with moderate strength scales and increased with increasing non-normality. For Likert-type scales, other than omega h, most indices were acceptable with non-normal data having at least four points, and more points were better. For different exponential distributed data, omega RT and GLB were robust, whereas the bias of other indices for binomial-beta distribution was generally large. An examination of an authentic large-scale international survey suggested that its items were at worst moderately non-normal; hence, non-normality was not a big concern. We recommend (a) the demand for continuous and normally distributed data for alpha may not be necessary for less severely non-normal data; (b) for severely non-normal data, we should have at least four scale points, and more points are better; and (c) there is no single golden standard for all data types, other issues such as scale loading, model structure, or scale length are also important.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RTena.完成签到,获得积分10
2秒前
Much完成签到 ,获得积分10
2秒前
洋洋发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI2S应助自觉南风采纳,获得10
5秒前
kk发布了新的文献求助10
5秒前
斯文败类应助宏宏采纳,获得10
5秒前
6秒前
6秒前
景辣条应助Stormi采纳,获得10
6秒前
萧a发布了新的文献求助10
6秒前
尹雪儿发布了新的文献求助10
7秒前
7秒前
不安的冷荷完成签到,获得积分10
8秒前
直率晓灵发布了新的文献求助30
10秒前
11秒前
12秒前
12秒前
12秒前
cyd发布了新的文献求助10
13秒前
脑洞疼应助corre采纳,获得10
13秒前
jianning完成签到,获得积分10
14秒前
14秒前
kei发布了新的文献求助10
15秒前
精明秋发布了新的文献求助30
15秒前
16秒前
17秒前
充电宝应助小v1212采纳,获得10
17秒前
18秒前
会撒娇的歌曲完成签到,获得积分10
18秒前
隐形曼青应助居北采纳,获得10
19秒前
JuanitoAloj完成签到,获得积分10
20秒前
踏实的嵩完成签到,获得积分10
20秒前
杭浩然发布了新的文献求助10
20秒前
21秒前
坦率傲玉完成签到 ,获得积分10
21秒前
搜集达人应助zzzwwwkkk采纳,获得10
22秒前
lucy完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145857
求助须知:如何正确求助?哪些是违规求助? 2797330
关于积分的说明 7823473
捐赠科研通 2453611
什么是DOI,文献DOI怎么找? 1305792
科研通“疑难数据库(出版商)”最低求助积分说明 627571
版权声明 601491