Contrasting accuracies of single and ensemble models for predicting solar and thermal performances of traditional vaulted roofs

计算机科学 随机森林 支持向量机 人工神经网络 均方误差 集成学习 太阳能 集合预报 测距 算法 机器学习 统计 数学 生态学 电信 生物
作者
M. M. Ayoub
出处
期刊:Solar Energy [Elsevier]
卷期号:236: 335-355 被引量:4
标识
DOI:10.1016/j.solener.2022.02.053
摘要

Traditional curved-roof forms have significant potentials in mitigating undesirable environmental impacts. Their performance predictions can be grouped into 4 trendlines of varying degrees of sophistication: theoretical abstracts, numerical methods, white-box simulations and black-box machine learning algorithms. Unprecedently, this research investigates the potential contribution of single- and ensemble-models to approximate the average hourly direct normal and diffuse horizontal irradiances (AHIRDirect, AHIRDiffuse) and cooling energy consumption (AHECCooling) of buildings topped with vaulted-roof forms of various configurations in Aswan, Egypt. Solar and energy simulations are first conducted to build essential datasets, which get pre-processed, before developing 8 single-models, representing 4 families of supervised single-algorithms: artificial neural networks, random forests, k-nearest neighbors and support vector regression. Voting ensemble-model is then created by combining the best-performing single-models. Lastly, the accuracies of all models are compared against simulation outputs. The results showed that no single-model could dominantly predict AHIRDirect, AHIRDiffuse and AHECCooling, obtaining tolerable R2 values, ranging from 97.017 to 61.913%, 92.782 to 43.986% and 99.341 to −9.219%, corresponding to RMSE values of 47.321 to 195.208, 17.457 to 53.617 and 0.002 to 0.032, respectively. Alternatively, voting ensemble-model acquired even better R2 values of 93.971, 93.047 and 97.276%, with RMSE values of 69.000, 17.249 and 0.004, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助嗯嗯嗯采纳,获得10
刚刚
yuyeww完成签到,获得积分10
刚刚
1秒前
Joker完成签到,获得积分10
1秒前
优雅的钢笔完成签到,获得积分10
1秒前
大模型应助abcdefg采纳,获得10
2秒前
2秒前
2秒前
大个应助SABUBU采纳,获得10
2秒前
3秒前
3秒前
XHH1994完成签到,获得积分10
4秒前
zsy完成签到,获得积分20
4秒前
小透明完成签到,获得积分0
4秒前
谭冬冬发布了新的文献求助10
4秒前
5秒前
怠慢发布了新的文献求助10
6秒前
务实冰烟关注了科研通微信公众号
6秒前
Jasper应助张欣宇采纳,获得10
7秒前
yuyeww发布了新的文献求助20
7秒前
7秒前
大力帽子应助读书的时候采纳,获得10
7秒前
doctor完成签到,获得积分20
8秒前
hal0824完成签到 ,获得积分10
8秒前
Uranus发布了新的文献求助30
8秒前
8秒前
思源应助222采纳,获得10
8秒前
路人发布了新的文献求助10
9秒前
9秒前
在水一方应助聪明伊采纳,获得10
9秒前
ddddd发布了新的文献求助10
10秒前
星辰大海应助bjjtdx1997采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Orange应助zsy采纳,获得10
11秒前
无聊的难敌完成签到 ,获得积分10
12秒前
12秒前
12秒前
小透明发布了新的文献求助10
12秒前
椿人发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450