Contrasting accuracies of single and ensemble models for predicting solar and thermal performances of traditional vaulted roofs

计算机科学 随机森林 支持向量机 人工神经网络 均方误差 集成学习 太阳能 集合预报 测距 算法 机器学习 统计 数学 生态学 电信 生物
作者
M. M. Ayoub
出处
期刊:Solar Energy [Elsevier]
卷期号:236: 335-355 被引量:4
标识
DOI:10.1016/j.solener.2022.02.053
摘要

Traditional curved-roof forms have significant potentials in mitigating undesirable environmental impacts. Their performance predictions can be grouped into 4 trendlines of varying degrees of sophistication: theoretical abstracts, numerical methods, white-box simulations and black-box machine learning algorithms. Unprecedently, this research investigates the potential contribution of single- and ensemble-models to approximate the average hourly direct normal and diffuse horizontal irradiances (AHIRDirect, AHIRDiffuse) and cooling energy consumption (AHECCooling) of buildings topped with vaulted-roof forms of various configurations in Aswan, Egypt. Solar and energy simulations are first conducted to build essential datasets, which get pre-processed, before developing 8 single-models, representing 4 families of supervised single-algorithms: artificial neural networks, random forests, k-nearest neighbors and support vector regression. Voting ensemble-model is then created by combining the best-performing single-models. Lastly, the accuracies of all models are compared against simulation outputs. The results showed that no single-model could dominantly predict AHIRDirect, AHIRDiffuse and AHECCooling, obtaining tolerable R2 values, ranging from 97.017 to 61.913%, 92.782 to 43.986% and 99.341 to −9.219%, corresponding to RMSE values of 47.321 to 195.208, 17.457 to 53.617 and 0.002 to 0.032, respectively. Alternatively, voting ensemble-model acquired even better R2 values of 93.971, 93.047 and 97.276%, with RMSE values of 69.000, 17.249 and 0.004, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远山完成签到 ,获得积分10
刚刚
1秒前
ruguo完成签到,获得积分10
1秒前
LTDJYYD完成签到,获得积分10
2秒前
CipherSage应助Sakura采纳,获得10
2秒前
CipherSage应助momo采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
柯柯驳回了Owen应助
5秒前
咸鱼发布了新的文献求助20
6秒前
che发布了新的文献求助10
7秒前
可可发布了新的文献求助10
7秒前
wishes完成签到 ,获得积分10
7秒前
8秒前
Cccsy完成签到,获得积分10
12秒前
dfuggh发布了新的文献求助10
14秒前
陈上心完成签到,获得积分20
17秒前
Fair完成签到,获得积分10
18秒前
18秒前
李爱国应助livialiu采纳,获得10
18秒前
感谢可靠赛君转发科研通微信,获得积分50
18秒前
斯文败类应助LJQ采纳,获得10
19秒前
科研通AI6应助xiongying采纳,获得10
19秒前
感谢dae转发科研通微信,获得积分50
19秒前
酷波er应助Mercury冰采纳,获得10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
汤朝雪完成签到,获得积分10
22秒前
感谢伶俐的芷荷转发科研通微信,获得积分50
22秒前
曲线发布了新的文献求助10
23秒前
俭朴依白完成签到,获得积分10
23秒前
23秒前
可乐完成签到,获得积分10
24秒前
金金完成签到,获得积分10
25秒前
25秒前
25秒前
感谢Vary转发科研通微信,获得积分50
25秒前
livialiu完成签到,获得积分10
26秒前
sunny完成签到,获得积分0
26秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355