Multi-Scale Pathological Fluid Segmentation in OCT With a Novel Curvature Loss in Convolutional Neural Network

光学相干层析成像 计算机科学 人工智能 卷积神经网络 分割 联营 深度学习 曲率 模式识别(心理学) 计算机视觉 医学 眼科 数学 几何学
作者
Gang Xing,Li Chen,Hualin Wang,Jiong Zhang,Dandan Sun,Feng Xu,Jianqin Lei,Xiayu Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1547-1559 被引量:14
标识
DOI:10.1109/tmi.2022.3142048
摘要

The segmentation of pathological fluid lesions in optical coherence tomography (OCT), including intraretinal fluid, subretinal fluid, and pigment epithelial detachment, is of great importance for the diagnosis and treatment of various eye diseases such as neovascular age-related macular degeneration and diabetic macular edema. Although significant progress has been achieved with the rapid development of fully convolutional neural networks (FCN) in recent years, some important issues remain unsolved. First, pathological fluid lesions in OCT show large variations in location, size, and shape, imposing challenges on the design of FCN architecture. Second, fluid lesions should be continuous regions without holes inside. But the current architectures lack the capability to preserve the shape prior information. In this study, we introduce an FCN architecture for the simultaneous segmentation of three types of pathological fluid lesions in OCT. First, attention gate and spatial pyramid pooling modules are employed to improve the ability of the network to extract multi-scale objects. Then, we introduce a novel curvature regularization term in the loss function to incorporate shape prior information. The proposed method was extensively evaluated on public and clinical datasets with significantly improved performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyjcnhyj完成签到,获得积分10
1秒前
英姑应助赖道之采纳,获得10
2秒前
4秒前
研友_LXdbaL发布了新的文献求助30
4秒前
思源应助单薄新烟采纳,获得10
5秒前
5秒前
6秒前
Zz完成签到,获得积分10
6秒前
Prandtl完成签到 ,获得积分10
8秒前
9秒前
zfzf0422完成签到 ,获得积分10
10秒前
上官若男应助jackie采纳,获得10
10秒前
10秒前
我是站长才怪应助Benliu采纳,获得20
11秒前
11秒前
zh20130完成签到,获得积分10
11秒前
11秒前
TT发布了新的文献求助10
12秒前
Star1983发布了新的文献求助10
12秒前
研友_LXdbaL完成签到,获得积分10
13秒前
14秒前
在水一方应助66采纳,获得10
15秒前
15秒前
15秒前
缘一发布了新的文献求助10
16秒前
junzilan发布了新的文献求助10
17秒前
CipherSage应助赖道之采纳,获得10
18秒前
ccc完成签到,获得积分10
18秒前
18秒前
18秒前
21秒前
Pauline完成签到,获得积分10
23秒前
jackie发布了新的文献求助10
23秒前
笨笨摇伽发布了新的文献求助10
25秒前
科目三应助皓月繁星采纳,获得10
25秒前
tomato完成签到,获得积分20
27秒前
CodeCraft应助缘一采纳,获得10
28秒前
小二郎应助刘铭晨采纳,获得10
28秒前
28秒前
大个应助风雨1210采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808