Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol

代谢工程 生物化学 代谢途径 生物合成 化学 醇脱氢酶 地衣芽孢杆菌 工业微生物学 生物 食品科学 发酵 细菌 枯草芽孢杆菌 遗传学
作者
Yangyang Zhan,Jiao Shi,Yuan Xiao,Fei Zhou,Huan Wang,Haixia Xu,Zhi Li,Shihui Yang,Dongbo Cai,Shouwen Chen
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:70: 43-54 被引量:46
标识
DOI:10.1016/j.ymben.2022.01.007
摘要

Due to its pleasant rose-like scent, 2-phenylethanol (2-PE) has been widely used in the fields of cosmetics and food. Microbial production of 2-PE offers a natural and sustainable production process. However, the current bioprocesses for de novo production of 2-PE suffer from low titer, yield, and productivity. In this work, a multilevel metabolic engineering strategy was employed for the high-level production of 2-PE. Firstly, the native alcohol dehydrogenase YugJ was identified and characterized for 2-PE production via genome mining and gene function analysis. Subsequently, the redirection of carbon flux into 2-PE biosynthesis by combining optimization of Ehrlich pathway, central metabolic pathway, and phenylpyruvate pathway enabled the production of 2-PE to a titer of 1.81 g/L. Specifically, AroK and AroD were identified as the rate-limiting enzymes of 2-PE production through transcription and metabolite analyses, and overexpression of aroK and aroD efficiently boosted 2-PE synthesis. The precursor competing pathways were blocked by eliminating byproduct formation pathways and modulating the glucose transport system. Under the optimal condition, the engineered strain PE23 produced 6.24 g/L of 2-PE with a yield and productivity of 0.14 g/g glucose and 0.13 g/L/h, respectively, using a complex medium in shake flasks. This work achieves the highest titer, yield, and productivity of 2-PE from glucose via the phenylpyruvate pathway. This study provides a promising platform that might be widely useful for improving the production of aromatic-derived chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nav发布了新的文献求助10
刚刚
打打应助AJY采纳,获得10
2秒前
yydtly发布了新的文献求助10
3秒前
如沐春风发布了新的文献求助10
3秒前
chrissylaiiii发布了新的文献求助30
3秒前
3秒前
NexusExplorer应助suda采纳,获得10
4秒前
dh完成签到,获得积分10
4秒前
风淡了发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
馋馋发布了新的文献求助30
8秒前
张三完成签到,获得积分10
9秒前
科研通AI5应助如沐春风采纳,获得10
10秒前
11秒前
stars发布了新的文献求助10
12秒前
隐形曼青应助枯藤老柳树采纳,获得10
13秒前
马旭辉发布了新的文献求助10
13秒前
科研通AI2S应助大吴克采纳,获得10
14秒前
Orange应助知行合一采纳,获得10
15秒前
gyx完成签到 ,获得积分10
16秒前
甜橙完成签到 ,获得积分10
16秒前
科研通AI2S应助大吴克采纳,获得10
17秒前
Eve完成签到 ,获得积分10
18秒前
香香丿发布了新的文献求助10
19秒前
19秒前
劲秉应助太阳采纳,获得10
20秒前
科研通AI2S应助大吴克采纳,获得10
21秒前
天天快乐应助lucky采纳,获得10
21秒前
馋馋完成签到,获得积分10
22秒前
完美世界应助Hour采纳,获得10
23秒前
23秒前
23秒前
24秒前
25秒前
捣蛋完成签到,获得积分20
25秒前
nozero应助科研通管家采纳,获得30
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672805
求助须知:如何正确求助?哪些是违规求助? 3228883
关于积分的说明 9782581
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610843
邀请新用户注册赠送积分活动 760758
科研通“疑难数据库(出版商)”最低求助积分说明 736203