Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol

代谢工程 生物化学 代谢途径 生物合成 化学 醇脱氢酶 地衣芽孢杆菌 工业微生物学 生物 食品科学 发酵 细菌 枯草芽孢杆菌 遗传学
作者
Yangyang Zhan,Jiao Shi,Yuan Xiao,Fei Zhou,Huan Wang,Haixia Xu,Zhi Li,Shihui Yang,Dongbo Cai,Shouwen Chen
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:70: 43-54 被引量:36
标识
DOI:10.1016/j.ymben.2022.01.007
摘要

Due to its pleasant rose-like scent, 2-phenylethanol (2-PE) has been widely used in the fields of cosmetics and food. Microbial production of 2-PE offers a natural and sustainable production process. However, the current bioprocesses for de novo production of 2-PE suffer from low titer, yield, and productivity. In this work, a multilevel metabolic engineering strategy was employed for the high-level production of 2-PE. Firstly, the native alcohol dehydrogenase YugJ was identified and characterized for 2-PE production via genome mining and gene function analysis. Subsequently, the redirection of carbon flux into 2-PE biosynthesis by combining optimization of Ehrlich pathway, central metabolic pathway, and phenylpyruvate pathway enabled the production of 2-PE to a titer of 1.81 g/L. Specifically, AroK and AroD were identified as the rate-limiting enzymes of 2-PE production through transcription and metabolite analyses, and overexpression of aroK and aroD efficiently boosted 2-PE synthesis. The precursor competing pathways were blocked by eliminating byproduct formation pathways and modulating the glucose transport system. Under the optimal condition, the engineered strain PE23 produced 6.24 g/L of 2-PE with a yield and productivity of 0.14 g/g glucose and 0.13 g/L/h, respectively, using a complex medium in shake flasks. This work achieves the highest titer, yield, and productivity of 2-PE from glucose via the phenylpyruvate pathway. This study provides a promising platform that might be widely useful for improving the production of aromatic-derived chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
乐仔完成签到,获得积分10
1秒前
关山月发布了新的文献求助10
3秒前
Akim应助娟娟采纳,获得10
4秒前
5秒前
5秒前
7秒前
Bing Yan完成签到,获得积分10
8秒前
FashionBoy应助淡定小蜜蜂采纳,获得10
8秒前
张半首发布了新的文献求助10
10秒前
Passskd发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
迅速的幻雪完成签到,获得积分20
14秒前
研友_VZG7GZ应助了又柳采纳,获得10
15秒前
蘑菇腿发布了新的文献求助10
15秒前
星星完成签到,获得积分10
16秒前
18秒前
19秒前
隐形曼青应助Passskd采纳,获得10
20秒前
20秒前
22秒前
完美世界应助黙宇循光采纳,获得10
23秒前
溴氧铋发布了新的文献求助10
24秒前
追寻的山晴应助www采纳,获得10
25秒前
25秒前
11_aa完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
28秒前
熏香澡牝完成签到,获得积分10
29秒前
29秒前
医者发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129