Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values

医学 接收机工作特性 无线电技术 有效扩散系数 单变量 曼惠特尼U检验 置信区间 核医学 单变量分析 放射科 威尔科克森符号秩检验 磁共振成像 统计 多元统计 内科学 数学
作者
Chanyuan Fan,Kailun Sun,Xiangde Min,Wei Cai,Wenzhi Lv,Xiaoling Ma,Yan Li,Chong Chen,Peiwei Zhao,Jinhan Qiao,Jianyao Lu,Yihao Guo,Liming Xia
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:148: 110158-110158 被引量:5
标识
DOI:10.1016/j.ejrad.2022.110158
摘要

To develop a machine-learning-based radiomics signature of ADC for discriminating between benign and malignant testicular masses and compare its classification performance with that of minimum and mean ADC.A total of ninety-seven patients with 101 histopathologically confirmed testicular masses (70 malignancies, 31 benignities) were evaluated in this retrospective study. Eight hundred fifty-one radiomics features were extracted from the preoperative ADC map of each lesion. The mean and minimum ADC values are part of the radiomics features. Thirty lesions were randomly selected to estimate the reliability of the features. The redundant features were eliminated using univariate analysis (independent t test and Mann-Whitney U test, where appropriate) and Spearman's rank correlation. The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection and radiomics signature generation. The classification performance of the radiomics signature and minimum and mean ADC values were evaluated by receiver operating characteristic (ROC) curve analysis and compared by DeLong's test.The whole lesion-based mean ADC showed no difference between benign and malignant testicular masses (P = 0.070, training cohort; P = 0.418, validation cohort). Compared with the minimum ADC, the ADC-based radiomics signature yielded a higher area under the curve (AUC) in both the training (AUC: 0.904, 95% confidence interval [CI]: 0.832-0.975) and validation cohorts (AUC: 0.868, 95% CI: 0.728-1.00).Conventional mean ADC values are not always helpful in discriminating between testicular benignities and malignancies. The minimum ADC and radiomics signature might be better alternatives, with the radiomics signature performing better than the minimum ADC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
调皮的巧凡完成签到,获得积分10
2秒前
朝朝发布了新的文献求助10
3秒前
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
moon完成签到,获得积分20
8秒前
wyt发布了新的文献求助10
8秒前
爱与感谢完成签到 ,获得积分10
9秒前
verbal2005发布了新的文献求助10
9秒前
钟山发布了新的文献求助10
9秒前
领导范儿应助自信书兰采纳,获得10
10秒前
自然翠阳完成签到 ,获得积分10
11秒前
HHHu完成签到,获得积分10
12秒前
lizike发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
谢大喵发布了新的文献求助10
15秒前
wyt完成签到,获得积分10
16秒前
南芜山为伴完成签到,获得积分10
17秒前
18秒前
20秒前
自信书兰发布了新的文献求助10
24秒前
24秒前
路越发布了新的文献求助10
26秒前
NexusExplorer应助三无采纳,获得10
26秒前
27秒前
30秒前
贝壳完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
Jasper应助典雅的俊驰采纳,获得10
34秒前
只因不只因完成签到,获得积分10
35秒前
大个应助褚呦采纳,获得10
38秒前
丘比特应助简7采纳,获得10
40秒前
40秒前
婧一发布了新的文献求助10
41秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955