已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values

医学 接收机工作特性 无线电技术 有效扩散系数 单变量 曼惠特尼U检验 置信区间 核医学 单变量分析 放射科 威尔科克森符号秩检验 磁共振成像 统计 多元统计 内科学 数学
作者
Chanyuan Fan,Kailun Sun,Xiangde Min,Wei Cai,Wenzhi Lv,Xiaoling Ma,Yan Li,Chong Chen,Peiwei Zhao,Jinhan Qiao,Jianyao Lu,Yihao Guo,Liming Xia
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:148: 110158-110158 被引量:5
标识
DOI:10.1016/j.ejrad.2022.110158
摘要

To develop a machine-learning-based radiomics signature of ADC for discriminating between benign and malignant testicular masses and compare its classification performance with that of minimum and mean ADC.A total of ninety-seven patients with 101 histopathologically confirmed testicular masses (70 malignancies, 31 benignities) were evaluated in this retrospective study. Eight hundred fifty-one radiomics features were extracted from the preoperative ADC map of each lesion. The mean and minimum ADC values are part of the radiomics features. Thirty lesions were randomly selected to estimate the reliability of the features. The redundant features were eliminated using univariate analysis (independent t test and Mann-Whitney U test, where appropriate) and Spearman's rank correlation. The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection and radiomics signature generation. The classification performance of the radiomics signature and minimum and mean ADC values were evaluated by receiver operating characteristic (ROC) curve analysis and compared by DeLong's test.The whole lesion-based mean ADC showed no difference between benign and malignant testicular masses (P = 0.070, training cohort; P = 0.418, validation cohort). Compared with the minimum ADC, the ADC-based radiomics signature yielded a higher area under the curve (AUC) in both the training (AUC: 0.904, 95% confidence interval [CI]: 0.832-0.975) and validation cohorts (AUC: 0.868, 95% CI: 0.728-1.00).Conventional mean ADC values are not always helpful in discriminating between testicular benignities and malignancies. The minimum ADC and radiomics signature might be better alternatives, with the radiomics signature performing better than the minimum ADC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一丢丢完成签到,获得积分10
刚刚
刚刚
1秒前
RAY1完成签到,获得积分10
2秒前
花呗完成签到,获得积分10
4秒前
丘比特应助会玩手机的猫采纳,获得10
5秒前
6秒前
Jasper应助Cloud采纳,获得10
7秒前
ping发布了新的文献求助10
7秒前
Akim应助啊啊啊采纳,获得10
8秒前
oreo完成签到,获得积分10
10秒前
花呗发布了新的文献求助10
10秒前
古离完成签到,获得积分10
10秒前
10秒前
科研通AI6应助LL采纳,获得30
11秒前
12秒前
kentonchow应助阿歪歪采纳,获得10
13秒前
筱莜完成签到,获得积分10
13秒前
16秒前
dou发布了新的文献求助10
16秒前
17秒前
17秒前
筱莜发布了新的文献求助10
18秒前
19秒前
等待的若发布了新的文献求助10
24秒前
24秒前
25秒前
李健的粉丝团团长应助QvQ采纳,获得10
26秒前
28秒前
舒伯特完成签到 ,获得积分10
29秒前
cc发布了新的文献求助10
29秒前
31秒前
啊啊啊发布了新的文献求助10
34秒前
34秒前
QvQ完成签到,获得积分10
35秒前
畅快白凝完成签到,获得积分10
35秒前
今天你开组会了吗完成签到,获得积分10
36秒前
37秒前
ddddddddddd发布了新的文献求助10
37秒前
www完成签到 ,获得积分10
38秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485