清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning

分割 点云 吞吐量 瓶颈 计算机科学 人工智能 图像分割 模式识别(心理学) 电信 嵌入式系统 无线
作者
Yinglun Li,Weiliang Wen,Miao Teng,Sheng Wu,Zetao Yu,Xiaodong Wang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106702-106702 被引量:86
标识
DOI:10.1016/j.compag.2022.106702
摘要

Point cloud segmentation is essential for studying the 3D spatial characteristics of plants. Notably, the segmentation accuracy greatly impacts subsequent 3D plant phenotypes extraction and 3D plant reconstruction. Automated segmentation approaches for plant point clouds are a bottleneck in achieving big data processing of 3D plant phenotypes. Using maize as a representative crop, this study developed DeepSeg3DMaize, a technique for plant point cloud segmentation that integrates high-throughput data acquisition and deep learning. A high-throughput data acquisition platform for individual plants and an association mapping panel containing 515 inbred lines were used to construct the training dataset. Specifically, the MVS-Pheno platform was used to acquire high-throughput data, and Label3DMaize was used for point cloud data labeling. Based on the dataset, PointNet was introduced to implement stem-leaf and organ instance segmentation, and six phenotypes were extracted. According to the results, the mean precision and F1-Score of stem-leaf segmentation were 0.91 and 0.85, respectively. Meanwhile, the mean precision and F1-Score for organ instance segmentation were 0.94 and 0.93, respectively. The correlations of the six parameters (leaf length, leaf width, leaf inclination, leaf growth height, plant height, and stem height) extracted from the segmentation results with the measured values were 0.90, 0.82, 0.94, 0.95, 0.99, and 0.94, respectively. High-throughput data acquisition, automatic organ segmentation, and phenotypic data extraction form an automatic phenotypic data processing pipeline, which is practical for dealing with large amounts of initial data. Besides, it provides a systematic reference for the automated analysis of 3D phenotypic features at the individual plant level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zephyr完成签到,获得积分10
3秒前
ykswz99发布了新的文献求助10
9秒前
糟糕的翅膀完成签到,获得积分10
13秒前
27秒前
ykswz99发布了新的文献求助10
28秒前
YY发布了新的文献求助10
31秒前
ykswz99完成签到,获得积分10
37秒前
48秒前
香蕉觅云应助铁本采纳,获得10
50秒前
徐通通发布了新的文献求助10
53秒前
shyの煜完成签到 ,获得积分10
56秒前
小蘑菇应助YY采纳,获得10
56秒前
muriel完成签到,获得积分10
57秒前
1分钟前
铁本发布了新的文献求助10
1分钟前
徐通通完成签到 ,获得积分10
1分钟前
铁本完成签到,获得积分10
1分钟前
lanxinge完成签到 ,获得积分20
1分钟前
1分钟前
汉堡包应助重要的难敌采纳,获得10
2分钟前
情怀应助天晴采纳,获得10
2分钟前
余悸完成签到,获得积分10
2分钟前
余悸发布了新的文献求助10
2分钟前
LZQ完成签到,获得积分0
3分钟前
3分钟前
天晴发布了新的文献求助10
3分钟前
3分钟前
YY发布了新的文献求助10
3分钟前
斯文败类应助天晴采纳,获得10
3分钟前
YY完成签到,获得积分10
3分钟前
慧慧完成签到,获得积分10
4分钟前
Dave完成签到 ,获得积分10
4分钟前
星际舟完成签到,获得积分10
4分钟前
al完成签到 ,获得积分10
5分钟前
路过完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
传奇完成签到 ,获得积分10
6分钟前
认真果汁发布了新的文献求助10
6分钟前
认真果汁完成签到,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763577
求助须知:如何正确求助?哪些是违规求助? 3308141
关于积分的说明 10142736
捐赠科研通 3023232
什么是DOI,文献DOI怎么找? 1659475
邀请新用户注册赠送积分活动 792698
科研通“疑难数据库(出版商)”最低求助积分说明 755109