Semantic Segmentation for High-Resolution Remote-Sensing Images via Dynamic Graph Context Reasoning

计算机科学 分割 符号 图形 成对比较 人工智能 背景(考古学) 理论计算机科学 数学 古生物学 算术 生物
作者
Yanzhou Su,Jian Cheng,Wen Wang,Haiwei Bai,Haijun Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:11
标识
DOI:10.1109/lgrs.2022.3145499
摘要

Semantic segmentation for high-resolution remote-sensing (HRRS) images is one of the most challenging tasks in remote-sensing images understanding. Capturing long-range dependencies in feature representations is crucial for semantic segmentation. Recent graph-based global reasoning networks (GloRe) focus on modeling the global contextual relationship between latent nodes based on fully connected graph in interaction space. However, such a dense operation is susceptible to redundant features. Most importantly, it treats each node equally, ignoring the contextual relationship between nodes in graphs. In this work, we propose to explore more effective contextual representations in semantic segmentation by introducing dynamic graph contextual reasoning module over GloRe, dubbed DGCR. It incorporates local semantic information that represents the relationships between nodes to perform long-range contextual reasoning. More specifically, to provide effectively and flexible reasoning in graph-based reasoning approaches, we construct $k$ -nearest neighbor (KNN) graphs rather than fully connected graphs using only the $k$ closest nodes depends on pairwise semantic distance. Extensive experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) Vaihingen and Potsdam datasets demonstrate the effectiveness and superiority of our proposed DGCR module over other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好了没了完成签到,获得积分10
1秒前
2秒前
zhuhaishan完成签到,获得积分10
4秒前
qqa完成签到,获得积分10
5秒前
河南老友发布了新的文献求助10
6秒前
脑洞疼应助林夏采纳,获得10
9秒前
树池应助林夏采纳,获得10
9秒前
小鱼儿发布了新的文献求助10
11秒前
贝贝完成签到 ,获得积分10
11秒前
11秒前
xv完成签到,获得积分10
15秒前
guo发布了新的文献求助10
17秒前
17秒前
朱冰蓝完成签到 ,获得积分10
18秒前
NIHAO完成签到 ,获得积分10
19秒前
hyw010724完成签到,获得积分20
21秒前
千纸鹤完成签到,获得积分10
22秒前
仁爱听露完成签到 ,获得积分10
23秒前
KKKZ完成签到,获得积分10
24秒前
小鱼儿完成签到,获得积分10
24秒前
hyw010724发布了新的文献求助10
24秒前
26秒前
CipherSage应助guo采纳,获得10
28秒前
小二郎应助瑾玉采纳,获得10
29秒前
Christine完成签到 ,获得积分20
31秒前
领导范儿应助zly采纳,获得10
31秒前
是微微完成签到,获得积分10
31秒前
Akim应助hyw010724采纳,获得10
33秒前
Orange应助从容的白竹采纳,获得10
34秒前
37秒前
sun完成签到,获得积分10
37秒前
37秒前
38秒前
cctv18应助嘻嘻采纳,获得10
38秒前
热心的思天完成签到,获得积分10
39秒前
40秒前
安静幻枫应助Hongni采纳,获得20
41秒前
珍珠发布了新的文献求助10
43秒前
穆紫应助热心的思天采纳,获得10
44秒前
Logan发布了新的文献求助10
44秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057308
求助须知:如何正确求助?哪些是违规求助? 2713802
关于积分的说明 7437402
捐赠科研通 2358921
什么是DOI,文献DOI怎么找? 1249607
科研通“疑难数据库(出版商)”最低求助积分说明 607190
版权声明 596314