亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSTM with particle Swam optimization for sales forecasting

水准点(测量) 人工神经网络 粒子群优化 计算机科学 正规化(语言学) 机器学习 数据挖掘 人工智能 大地测量学 地理
作者
Qi-Qiao He,Cuiyu Wu,Yain‐Whar Si
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:51: 101118-101118 被引量:48
标识
DOI:10.1016/j.elerap.2022.101118
摘要

• Propose a sale forecasting approach based on LSTM with PSO for E-commerce companies. • The number of hidden neurons and iterations in LSTM are optimized by PSO. • We compare the proposed approach with 9 competing approaches. • Evaluated on the real datasets from an E-commerce company and 3 benchmark datasets. • Proposed models achieved good results in forecasting accuracy. Sales volume forecasting is of great significance to E-commerce companies. Accurate sales forecasting enables managers to make reasonable resource allocation in advance. In this paper, we propose a novel approach based on Long Short-Term Memory with Particle Swam Optimization (LSTM-PSO) for sale forecasting in E-commerce companies. In the proposed approach, the number of hidden neurons in different LSTM layers, and the number of iterations for training are optimized by Particle Swam Optimization metaheuristic. In the experiments, we compare the proposed approach with 9 competing approaches. The effectiveness of the proposed approach is evaluated on the real datasets from an E-commerce company as well as on the publicly available benchmark datasets. In the experiments, neural network design, activation functions, methods of regularization, and the training method of neural network are also analyzed. Experiment results show that the proposed PSO-LSTM models achieved good results in forecasting accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴朗发布了新的文献求助10
5秒前
沉静摇伽发布了新的文献求助10
15秒前
banbieshenlu完成签到,获得积分10
17秒前
19秒前
ding应助taysun采纳,获得10
20秒前
20秒前
Shihan完成签到,获得积分10
22秒前
牛肉面完成签到,获得积分10
25秒前
小马甲应助大力的图图采纳,获得10
25秒前
生椰拿铁发布了新的文献求助10
26秒前
在水一方应助Shihan采纳,获得10
27秒前
whick发布了新的文献求助10
28秒前
34秒前
忽远忽近的她完成签到 ,获得积分10
36秒前
36秒前
量子星尘发布了新的文献求助10
36秒前
喵了个咪发布了新的文献求助10
39秒前
晴朗完成签到 ,获得积分10
39秒前
米龙完成签到,获得积分10
42秒前
ssch197完成签到 ,获得积分10
42秒前
彭于晏应助凡凡采纳,获得30
45秒前
喵了个咪完成签到 ,获得积分10
49秒前
53秒前
Chris完成签到 ,获得积分10
56秒前
57秒前
凡凡发布了新的文献求助30
58秒前
1分钟前
科研通AI2S应助李联洪采纳,获得10
1分钟前
科研通AI2S应助Shihan采纳,获得10
1分钟前
onelastkiss给onelastkiss的求助进行了留言
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
江流儿完成签到,获得积分10
1分钟前
1分钟前
雪白冥茗完成签到 ,获得积分10
1分钟前
卷毛维安发布了新的文献求助10
1分钟前
JIE完成签到 ,获得积分10
1分钟前
bbhk完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112