亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSTM with particle Swam optimization for sales forecasting

水准点(测量) 人工神经网络 粒子群优化 计算机科学 正规化(语言学) 机器学习 数据挖掘 人工智能 大地测量学 地理
作者
Qi-Qiao He,Cuiyu Wu,Yain‐Whar Si
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:51: 101118-101118 被引量:48
标识
DOI:10.1016/j.elerap.2022.101118
摘要

• Propose a sale forecasting approach based on LSTM with PSO for E-commerce companies. • The number of hidden neurons and iterations in LSTM are optimized by PSO. • We compare the proposed approach with 9 competing approaches. • Evaluated on the real datasets from an E-commerce company and 3 benchmark datasets. • Proposed models achieved good results in forecasting accuracy. Sales volume forecasting is of great significance to E-commerce companies. Accurate sales forecasting enables managers to make reasonable resource allocation in advance. In this paper, we propose a novel approach based on Long Short-Term Memory with Particle Swam Optimization (LSTM-PSO) for sale forecasting in E-commerce companies. In the proposed approach, the number of hidden neurons in different LSTM layers, and the number of iterations for training are optimized by Particle Swam Optimization metaheuristic. In the experiments, we compare the proposed approach with 9 competing approaches. The effectiveness of the proposed approach is evaluated on the real datasets from an E-commerce company as well as on the publicly available benchmark datasets. In the experiments, neural network design, activation functions, methods of regularization, and the training method of neural network are also analyzed. Experiment results show that the proposed PSO-LSTM models achieved good results in forecasting accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Epiphany发布了新的文献求助10
2秒前
阔口阔落发布了新的文献求助10
3秒前
qiu发布了新的文献求助10
6秒前
朴素的幻灵完成签到,获得积分10
6秒前
阔口阔落完成签到,获得积分10
10秒前
12秒前
wer完成签到,获得积分10
13秒前
14秒前
巫衣絮完成签到 ,获得积分10
16秒前
19秒前
22秒前
Hello应助CMCM采纳,获得10
22秒前
清脆靳发布了新的文献求助10
24秒前
Miku完成签到,获得积分10
24秒前
怕孤独的访云完成签到 ,获得积分10
26秒前
32秒前
32秒前
雪生在无人荒野完成签到,获得积分10
32秒前
生动的煎蛋完成签到 ,获得积分10
35秒前
上官若男应助Yuanyuan采纳,获得10
36秒前
37秒前
40秒前
彭浩发布了新的文献求助10
41秒前
45秒前
qlsweep发布了新的文献求助10
51秒前
53秒前
56秒前
59秒前
1分钟前
思源应助qlsweep采纳,获得100
1分钟前
陳.发布了新的文献求助10
1分钟前
西红柿有饭吃吗完成签到,获得积分10
1分钟前
彭浩完成签到,获得积分10
1分钟前
1分钟前
LLLucen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561238
求助须知:如何正确求助?哪些是违规求助? 4646374
关于积分的说明 14678419
捐赠科研通 4587681
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344