LSTM with particle Swam optimization for sales forecasting

水准点(测量) 人工神经网络 粒子群优化 计算机科学 正规化(语言学) 机器学习 数据挖掘 人工智能 大地测量学 地理
作者
Qi-Qiao He,Cuiyu Wu,Yain‐Whar Si
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:51: 101118-101118 被引量:48
标识
DOI:10.1016/j.elerap.2022.101118
摘要

• Propose a sale forecasting approach based on LSTM with PSO for E-commerce companies. • The number of hidden neurons and iterations in LSTM are optimized by PSO. • We compare the proposed approach with 9 competing approaches. • Evaluated on the real datasets from an E-commerce company and 3 benchmark datasets. • Proposed models achieved good results in forecasting accuracy. Sales volume forecasting is of great significance to E-commerce companies. Accurate sales forecasting enables managers to make reasonable resource allocation in advance. In this paper, we propose a novel approach based on Long Short-Term Memory with Particle Swam Optimization (LSTM-PSO) for sale forecasting in E-commerce companies. In the proposed approach, the number of hidden neurons in different LSTM layers, and the number of iterations for training are optimized by Particle Swam Optimization metaheuristic. In the experiments, we compare the proposed approach with 9 competing approaches. The effectiveness of the proposed approach is evaluated on the real datasets from an E-commerce company as well as on the publicly available benchmark datasets. In the experiments, neural network design, activation functions, methods of regularization, and the training method of neural network are also analyzed. Experiment results show that the proposed PSO-LSTM models achieved good results in forecasting accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2305814008完成签到,获得积分20
1秒前
1秒前
3秒前
浮游应助scfsl采纳,获得10
3秒前
3秒前
3秒前
一只小学弱完成签到,获得积分10
4秒前
4秒前
苏羽关注了科研通微信公众号
4秒前
4秒前
PONY发布了新的文献求助10
6秒前
JinChow发布了新的文献求助10
6秒前
论文小白发布了新的文献求助10
6秒前
7秒前
Jasper应助kyros采纳,获得10
9秒前
空城发布了新的文献求助10
9秒前
善学以致用应助oVUVo采纳,获得10
10秒前
你大爷完成签到,获得积分10
11秒前
小二郎应助hl采纳,获得10
11秒前
12秒前
XYN1发布了新的文献求助10
13秒前
14秒前
15秒前
无极微光应助卓头OvQ采纳,获得20
15秒前
15秒前
华仔应助论文小白采纳,获得10
16秒前
研友_VZG7GZ应助kyros采纳,获得10
16秒前
PONY完成签到,获得积分10
16秒前
canian完成签到,获得积分10
16秒前
17秒前
17秒前
2305814008发布了新的文献求助10
18秒前
19秒前
CL发布了新的文献求助10
19秒前
Lucas应助anhao采纳,获得10
19秒前
hrpppp完成签到,获得积分10
19秒前
狂风阿来完成签到 ,获得积分10
19秒前
19秒前
北执发布了新的文献求助10
19秒前
yan完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718