LSTM with particle Swam optimization for sales forecasting

水准点(测量) 人工神经网络 粒子群优化 计算机科学 正规化(语言学) 机器学习 数据挖掘 人工智能 大地测量学 地理
作者
Qi-Qiao He,Cuiyu Wu,Yain‐Whar Si
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:51: 101118-101118 被引量:48
标识
DOI:10.1016/j.elerap.2022.101118
摘要

• Propose a sale forecasting approach based on LSTM with PSO for E-commerce companies. • The number of hidden neurons and iterations in LSTM are optimized by PSO. • We compare the proposed approach with 9 competing approaches. • Evaluated on the real datasets from an E-commerce company and 3 benchmark datasets. • Proposed models achieved good results in forecasting accuracy. Sales volume forecasting is of great significance to E-commerce companies. Accurate sales forecasting enables managers to make reasonable resource allocation in advance. In this paper, we propose a novel approach based on Long Short-Term Memory with Particle Swam Optimization (LSTM-PSO) for sale forecasting in E-commerce companies. In the proposed approach, the number of hidden neurons in different LSTM layers, and the number of iterations for training are optimized by Particle Swam Optimization metaheuristic. In the experiments, we compare the proposed approach with 9 competing approaches. The effectiveness of the proposed approach is evaluated on the real datasets from an E-commerce company as well as on the publicly available benchmark datasets. In the experiments, neural network design, activation functions, methods of regularization, and the training method of neural network are also analyzed. Experiment results show that the proposed PSO-LSTM models achieved good results in forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿华发布了新的文献求助10
2秒前
活力的问安完成签到 ,获得积分10
4秒前
nini发布了新的文献求助10
4秒前
5秒前
空蝉完成签到,获得积分10
6秒前
7秒前
汉堡包应助叙余采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
完美世界应助herogyus采纳,获得20
9秒前
彳亍1117应助科研通管家采纳,获得20
9秒前
彳亍1117应助科研通管家采纳,获得20
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
彳亍1117应助科研通管家采纳,获得20
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
吃的饱饱呀完成签到,获得积分10
11秒前
ho发布了新的文献求助30
13秒前
含蓄觅山完成签到 ,获得积分10
13秒前
义气秋灵发布了新的文献求助10
13秒前
16秒前
可爱的函函应助Y神采纳,获得10
16秒前
研友_zndKVL发布了新的文献求助10
18秒前
雾海完成签到,获得积分10
18秒前
庄默羽完成签到,获得积分10
20秒前
一坛完成签到 ,获得积分10
20秒前
lslslslsllss发布了新的文献求助20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059