LSTM with particle Swam optimization for sales forecasting

水准点(测量) 人工神经网络 粒子群优化 计算机科学 正规化(语言学) 机器学习 数据挖掘 人工智能 大地测量学 地理
作者
Qi-Qiao He,Cuiyu Wu,Yain‐Whar Si
出处
期刊:Electronic Commerce Research and Applications [Elsevier]
卷期号:51: 101118-101118 被引量:48
标识
DOI:10.1016/j.elerap.2022.101118
摘要

• Propose a sale forecasting approach based on LSTM with PSO for E-commerce companies. • The number of hidden neurons and iterations in LSTM are optimized by PSO. • We compare the proposed approach with 9 competing approaches. • Evaluated on the real datasets from an E-commerce company and 3 benchmark datasets. • Proposed models achieved good results in forecasting accuracy. Sales volume forecasting is of great significance to E-commerce companies. Accurate sales forecasting enables managers to make reasonable resource allocation in advance. In this paper, we propose a novel approach based on Long Short-Term Memory with Particle Swam Optimization (LSTM-PSO) for sale forecasting in E-commerce companies. In the proposed approach, the number of hidden neurons in different LSTM layers, and the number of iterations for training are optimized by Particle Swam Optimization metaheuristic. In the experiments, we compare the proposed approach with 9 competing approaches. The effectiveness of the proposed approach is evaluated on the real datasets from an E-commerce company as well as on the publicly available benchmark datasets. In the experiments, neural network design, activation functions, methods of regularization, and the training method of neural network are also analyzed. Experiment results show that the proposed PSO-LSTM models achieved good results in forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
友好剑鬼完成签到,获得积分20
1秒前
丘比特应助cjx采纳,获得10
1秒前
爆米花应助去去去去采纳,获得10
2秒前
sherrycofe完成签到,获得积分10
3秒前
天天开心发布了新的文献求助10
4秒前
Radon发布了新的文献求助10
5秒前
完美世界应助微微采纳,获得10
6秒前
体贴花卷发布了新的文献求助30
6秒前
9秒前
1111完成签到,获得积分20
10秒前
称心枫完成签到,获得积分10
10秒前
Yangyang完成签到,获得积分0
10秒前
Tovy发布了新的文献求助10
12秒前
sztao完成签到,获得积分20
12秒前
13秒前
14秒前
开朗之云发布了新的文献求助10
15秒前
微微发布了新的文献求助10
17秒前
11完成签到 ,获得积分10
17秒前
21秒前
田様应助向日葵采纳,获得10
21秒前
22秒前
微微完成签到,获得积分10
23秒前
lincsh完成签到,获得积分10
23秒前
Tovy完成签到,获得积分10
23秒前
keikeizi发布了新的文献求助30
24秒前
24秒前
嗯哼发布了新的文献求助10
25秒前
25秒前
小菜鸡发布了新的文献求助10
26秒前
27秒前
午见千山应助hayk采纳,获得10
27秒前
自由安荷发布了新的文献求助10
27秒前
开朗之云完成签到,获得积分20
29秒前
29秒前
稳重茹嫣发布了新的文献求助10
30秒前
念初发布了新的文献求助10
30秒前
义气的三德完成签到,获得积分10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138429
求助须知:如何正确求助?哪些是违规求助? 2789366
关于积分的说明 7791120
捐赠科研通 2445599
什么是DOI,文献DOI怎么找? 1300622
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065