Biomedical data, computational methods and tools for evaluating disease–disease associations

疾病 临床表型 计算机科学 计算模型 复杂疾病 数据科学 透视图(图形) 计算生物学 生物信息学 人工智能 医学 表型 生物 病理 遗传学 基因
作者
Ju Xiang,Jiashuai Zhang,Yichao Zhao,Fang‐Xiang Wu,Min Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:16
标识
DOI:10.1093/bib/bbac006
摘要

Abstract In recent decades, exploring potential relationships between diseases has been an active research field. With the rapid accumulation of disease-related biomedical data, a lot of computational methods and tools/platforms have been developed to reveal intrinsic relationship between diseases, which can provide useful insights to the study of complex diseases, e.g. understanding molecular mechanisms of diseases and discovering new treatment of diseases. Human complex diseases involve both external phenotypic abnormalities and complex internal molecular mechanisms in organisms. Computational methods with different types of biomedical data from phenotype to genotype can evaluate disease–disease associations at different levels, providing a comprehensive perspective for understanding diseases. In this review, available biomedical data and databases for evaluating disease–disease associations are first summarized. Then, existing computational methods for disease–disease associations are reviewed and classified into five groups in terms of the usages of biomedical data, including disease semantic–based, phenotype-based, function-based, representation learning–based and text mining–based methods. Further, we summarize software tools/platforms for computation and analysis of disease-disease associations. Finally, we give a discussion and summary on the research of disease–disease associations. This review provides a systematic overview for current disease association research, which could promote the development and applications of computational methods and tools/platforms for disease–disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯赏迎松发布了新的文献求助10
刚刚
lee完成签到,获得积分10
刚刚
老孟发布了新的文献求助10
刚刚
liuyx完成签到 ,获得积分10
1秒前
2秒前
2秒前
大模型应助Pony采纳,获得10
3秒前
chart完成签到 ,获得积分10
3秒前
5秒前
6秒前
小马甲应助hzauhzau采纳,获得10
6秒前
Lucas选李华完成签到 ,获得积分10
7秒前
Jehuw发布了新的文献求助10
7秒前
Leif举报xue求助涉嫌违规
8秒前
zhouyunan发布了新的文献求助10
8秒前
是木易呀发布了新的文献求助10
9秒前
9秒前
sg253780043完成签到,获得积分10
10秒前
10秒前
双黄应助好旺采纳,获得10
10秒前
怕黑寻菡发布了新的文献求助10
11秒前
ouczl完成签到,获得积分10
11秒前
12秒前
Lucas应助凊嗏淡墨采纳,获得10
12秒前
12秒前
zjspidany发布了新的文献求助10
12秒前
爽爽完成签到,获得积分10
13秒前
13秒前
俊秀的念烟完成签到,获得积分10
14秒前
runpeng完成签到,获得积分10
14秒前
15秒前
蜉蝣完成签到,获得积分10
15秒前
16秒前
16秒前
陈肖楠发布了新的文献求助10
16秒前
16秒前
16秒前
followZ完成签到,获得积分10
17秒前
zhaozhao228发布了新的文献求助10
18秒前
木子yuchen完成签到,获得积分0
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793