丝带
场效应晶体管
凝聚态物理
GSM演进的增强数据速率
阈下斜率
晶体管
MOSFET
材料科学
电子
光电子学
纳米技术
电压
电气工程
物理
计算机科学
复合材料
工程类
电信
量子力学
作者
Qianwen Wang,Pengpeng Sang,Wei Wei,Yuan Li,Jiezhi Chen
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2022-01-13
卷期号:5 (1): 1178-1184
被引量:5
标识
DOI:10.1021/acsanm.1c03793
摘要
Power dissipation is a great challenge for continuous size scaling in CMOS technology because of the thermal limitation on the switching rate of conventional transistors. Here, to break the thermal tyranny, we propose a series of intrinsic cold-source field-effect transistors (CS-FETs) with steep slopes based on armchair transition-metal dichalcogenides (TMD) nanoribbons (NRs) (MX2NRs, M = Mo, W; X = S, Se, Te). The edge states of the TMD NRs can filter out the high-energy electrons and break the "Boltzmann tyranny" at room temperature. First-principles calculations unveil the electronic properties of −H, −F, and −H–O terminated MX2NRs with different ribbon widths. Based on quantum transport simulation, −F and −H–O terminated MoS2NRs present FET performance better than that of the −H terminated MoS2NR. A steep subthreshold swing (28 mV/decade) and a large ON/OFF ratio (4 × 105) are obtained for the 12-MoS2NR–F FET with a 5 nm channel length. Moreover, the effects of the ribbon width, channel length, bias voltage, edge roughness, and defects on MoS2NR–F FET performance are also investigated. This work demonstrates edge functionalization as an effective approach to modulate the TMD NRs and guides the design of intrinsic cold-source transistors.
科研通智能强力驱动
Strongly Powered by AbleSci AI