MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas

医学 接收机工作特性 无线电技术 逻辑回归 Lasso(编程语言) 神经组阅片室 人工智能 放射科 支持向量机 随机森林 乳房磁振造影 机器学习
作者
Mitsuteru Tsuchiya,Takayuki Masui,Kazuma Terauchi,Takahiro Yamada,Motoyuki Katyayama,Shintaro Ichikawa,Yoshifumi Noda,Satoshi Goshima
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-021-08510-8
摘要

ObjectivesTo evaluate the diagnostic performance of MRI-based radiomics model for differentiating phyllodes tumors of the breast from fibroadenomas.MethodsThis retrospective study included 88 patients (32 with phyllodes tumors and 56 with fibroadenomas) who underwent MRI. Radiomic features were extracted from T2-weighted image, pre-contrast T1-weighted image, and the first-phase and late-phase dynamic contrast-enhanced MRIs. To create stable machine learning models and balanced classes, data augmentation was performed. A least absolute shrinkage and selection operator (LASSO) regression was performed to select features and build the radiomics model. A radiological model was constructed from conventional MRI features evaluated by radiologists. A combined model was constructed using both radiomics features and radiological features. Machine learning classifications were done using support vector machine, extreme gradient boosting, and random forest. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model.ResultsAmong 1070 features, the LASSO logistic regression selected 35 features. Among three machine learning classifiers, support vector machine had the best performance. Compared to the radiological model (AUC: 0.77 ± 0.11), the radiomics model (AUC: 0.96 ± 0.04) and combined model (0.97 ± 0.03) had significantly improved AUC values (both p < 0.01) in the validation set. The combined model had a relatively higher AUC than that of the radiomics model in the validation set, but this was not significantly different (p = 0.391).ConclusionsRadiomics analysis based on MRI showed promise for discriminating phyllodes tumors from fibroadenomas.Key Points• The radiomics model and the combined model were superior to the radiological model for differentiating phyllodes tumors from fibroadenomas.• The SVM classifier performed best in the current study.• MRI-based radiomics model could help accurately differentiate phyllodes tumors from fibroadenomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangkang完成签到,获得积分10
刚刚
刚刚
momofengfeng应助感动城采纳,获得50
1秒前
1秒前
kanglan完成签到,获得积分10
1秒前
发炎的扁桃体完成签到,获得积分10
1秒前
1秒前
xixi完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
李健应助lele7458采纳,获得10
2秒前
2秒前
丘比特应助LiAlan采纳,获得10
2秒前
3秒前
紫薯球完成签到,获得积分10
3秒前
3秒前
化学位移值完成签到 ,获得积分10
4秒前
qiuqiu0999完成签到,获得积分10
4秒前
孙梁子发布了新的文献求助10
4秒前
4秒前
沉默访冬完成签到,获得积分10
5秒前
撒旦啊实打实的完成签到,获得积分10
5秒前
5秒前
小马甲应助笨笨的初翠采纳,获得10
5秒前
5秒前
儒雅曼云完成签到,获得积分10
5秒前
PPPPPP完成签到,获得积分10
5秒前
5秒前
5秒前
Bling婉完成签到,获得积分10
5秒前
6秒前
科研小白发布了新的文献求助10
6秒前
DD发布了新的文献求助10
6秒前
6秒前
Ekko发布了新的文献求助10
7秒前
Neltharion完成签到,获得积分10
7秒前
zzy完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355