已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas

医学 接收机工作特性 无线电技术 逻辑回归 Lasso(编程语言) 神经组阅片室 人工智能 放射科 支持向量机 随机森林 乳房磁振造影 机器学习
作者
Mitsuteru Tsuchiya,Takayuki Masui,Kazuma Terauchi,Takahiro Yamada,Motoyuki Katyayama,Shintaro Ichikawa,Yoshifumi Noda,Satoshi Goshima
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-021-08510-8
摘要

ObjectivesTo evaluate the diagnostic performance of MRI-based radiomics model for differentiating phyllodes tumors of the breast from fibroadenomas.MethodsThis retrospective study included 88 patients (32 with phyllodes tumors and 56 with fibroadenomas) who underwent MRI. Radiomic features were extracted from T2-weighted image, pre-contrast T1-weighted image, and the first-phase and late-phase dynamic contrast-enhanced MRIs. To create stable machine learning models and balanced classes, data augmentation was performed. A least absolute shrinkage and selection operator (LASSO) regression was performed to select features and build the radiomics model. A radiological model was constructed from conventional MRI features evaluated by radiologists. A combined model was constructed using both radiomics features and radiological features. Machine learning classifications were done using support vector machine, extreme gradient boosting, and random forest. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model.ResultsAmong 1070 features, the LASSO logistic regression selected 35 features. Among three machine learning classifiers, support vector machine had the best performance. Compared to the radiological model (AUC: 0.77 ± 0.11), the radiomics model (AUC: 0.96 ± 0.04) and combined model (0.97 ± 0.03) had significantly improved AUC values (both p < 0.01) in the validation set. The combined model had a relatively higher AUC than that of the radiomics model in the validation set, but this was not significantly different (p = 0.391).ConclusionsRadiomics analysis based on MRI showed promise for discriminating phyllodes tumors from fibroadenomas.Key Points• The radiomics model and the combined model were superior to the radiological model for differentiating phyllodes tumors from fibroadenomas.• The SVM classifier performed best in the current study.• MRI-based radiomics model could help accurately differentiate phyllodes tumors from fibroadenomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yam完成签到,获得积分10
3秒前
12秒前
YH_Z完成签到 ,获得积分10
15秒前
焦糖下论文完成签到,获得积分10
18秒前
19秒前
火山发布了新的文献求助10
19秒前
22秒前
28秒前
han发布了新的文献求助10
28秒前
32秒前
学不完了完成签到,获得积分10
37秒前
XhuaQye完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得30
39秒前
加菲丰丰应助科研通管家采纳,获得20
39秒前
39秒前
科目三应助火山采纳,获得10
41秒前
42秒前
充电宝应助andy采纳,获得10
44秒前
一朵会长树的花完成签到,获得积分10
48秒前
50秒前
han完成签到,获得积分10
51秒前
刘刘完成签到 ,获得积分10
52秒前
53秒前
早晚完成签到 ,获得积分10
56秒前
学不完了发布了新的文献求助20
56秒前
诚心的信封完成签到 ,获得积分10
57秒前
57秒前
59秒前
ylky完成签到 ,获得积分10
1分钟前
1分钟前
superbanggg发布了新的文献求助10
1分钟前
Zyzpkilly发布了新的文献求助10
1分钟前
1分钟前
1分钟前
superbanggg完成签到,获得积分10
1分钟前
1分钟前
Zyzpkilly完成签到,获得积分10
1分钟前
香蕉觅云应助Minerva采纳,获得10
1分钟前
寻道图强举报调研昵称求助涉嫌违规
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154783
求助须知:如何正确求助?哪些是违规求助? 2805656
关于积分的说明 7865443
捐赠科研通 2463783
什么是DOI,文献DOI怎么找? 1311609
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832