DeepBSI: a multimodal deep learning framework for predicting the transcription factor binding site and intensity

计算机科学 源代码 人工智能 背景(考古学) DNA结合位点 机器学习 卷积神经网络 深度学习 循环神经网络 人工神经网络 模式识别(心理学) 数据挖掘 生物 遗传学 古生物学 基因表达 发起人 基因 操作系统
作者
Peng Zhang,Shikui Tu
标识
DOI:10.1109/bibm52615.2021.9669594
摘要

To fully understand the detailed regulation mechanism of genomes and their functions, increasing computational methods have been developed to predict the TF binding site and intensity mainly based on DNA sequences or epigenomic data but ignoring the TF binding data across cell types. To address this problem, we proposed a multimodal deep learning framework, DeepBSI, to predict TF binding site and intensity in target cell type by leveraging the corresponding TF binding data across cell types. The framework can not only detect associations between sequence context features but also incorporate the correlations between TF binding signal values within and across cell types to make the prediction. In addition, the front modules of the framework employ the same convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture model providing valuable information of TF motifs and their interactions, which make the framework interpretable. Applying DeepBSI to ten representative TFs across five cell types proved that models contain the TF binding information across cell types can significantly improve the performance of models in both TF binding site and intensity predicting tasks. The implemented code and experimental dataset are available online at https://github.com/yushenshashen/DeepBSI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的baby发布了新的文献求助10
刚刚
隐形曼青应助GGMJ采纳,获得10
刚刚
旺仔不甜完成签到,获得积分10
1秒前
丘比特应助June采纳,获得10
3秒前
liusha发布了新的文献求助10
4秒前
Hello应助mira采纳,获得10
6秒前
7秒前
科研通AI6应助小易采纳,获得10
8秒前
lxt完成签到,获得积分10
10秒前
12秒前
12秒前
怜然关注了科研通微信公众号
14秒前
情怀应助李杰采纳,获得10
16秒前
所所应助天天开心采纳,获得10
16秒前
初一发布了新的文献求助10
16秒前
赘婿应助万松辉采纳,获得10
16秒前
17秒前
ysws完成签到,获得积分10
18秒前
Orange应助乐观的颦采纳,获得10
18秒前
完美世界应助June采纳,获得10
20秒前
21秒前
21秒前
闪闪完成签到,获得积分10
23秒前
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
23秒前
所所应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得20
24秒前
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
慎默应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073