光降解
光催化
降级(电信)
催化作用
石墨烯
核化学
溴酚蓝
材料科学
化学工程
氧化物
化学
纳米技术
有机化学
色谱法
电信
工程类
计算机科学
作者
Pei Jiang,Xueyu Wei,Hanfei Chen,Zhigang Liu
标识
DOI:10.1080/03067319.2021.2020768
摘要
The present work deals with simple hydrothermal preparation of magnetically separable BiVO4/N-rGO/CuFe2O4 Z-scheme hybrid photocatalyst for efficient detoxification of p-bromophenol (p-BP). BiVO4 is one of the most efficient visible light catalyst, however, suffers with photo-corrosion and high recombination of charge carriers that restricts its applications. Addition of graphene oxide doped with nitrogen are believed to overcome these issues. Further addition of CuFe2O4 enhances the catalytic degradation and helps in separating the catalyst. With these merits BiVO4/N-rGO/CuFe2O4 could be a promising photocatalyst for detoxification of p-BP. After 60 min of irradiation 94.1 ± 1.2% degradation was achieved by the BiVO4/N-rGO/CuFe2O4 (k = 0.01749 min−1) while only 53.8 ± 2.3% was observed in BiVO4 (k = 0.00674 min−1). The catalyst could be able to recover using external magnet and showed 86.4% of degradation efficiency even after five recycles, which suggested its good stability. The degradation products identification and pathway were proposed based on LC-ESI/MS analysis. Moreover, phytotoxicity assessment of the degradation products was investigated on Phaseolus vulgaris in which the germination index (GI) was about 11.4% for pure p-BP, while it was about 83.03% for degradation products. Thus, the results suggested that more efficient p-BP detoxification was achieved during this photodegradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI