PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network

计算机科学 人工智能 深度学习 规范化(社会学) 马修斯相关系数 卷积神经网络 机器学习 交互网络 人工神经网络 化学 支持向量机 生物化学 社会学 人类学 基因
作者
Xiaowen Wang,Hongming Zhu,Yizhi Jiang,Yulong Li,Chen Tang,Xiaohan Chen,Li Yunjie,Qi Liu,Liu Qin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:14
标识
DOI:10.1093/bib/bbab587
摘要

Abstract Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein–protein interaction (PPI) network with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator characteristics curve of 0.90, an area under the precision–recall curve of 0.63 and a Cohen’s Kappa of 0.53. In the ablation study, we find that using the multi-omics data and the integrated PPI network’s information both can improve the prediction results. Additionally, the case study demonstrates the consistency between PRODeepSyn and previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助开心的幼珊采纳,获得10
1秒前
2秒前
Ava应助冷艳的白竹采纳,获得10
3秒前
4秒前
欢呼小蚂蚁完成签到,获得积分10
4秒前
5秒前
jacshhhh完成签到,获得积分10
6秒前
7秒前
Zyk完成签到,获得积分10
7秒前
lingyan hu完成签到 ,获得积分10
9秒前
9秒前
tursun完成签到,获得积分10
10秒前
立军完成签到,获得积分10
10秒前
大模型应助FZ采纳,获得30
11秒前
11秒前
FashionBoy应助孤梦落雨采纳,获得10
12秒前
oikage发布了新的文献求助10
12秒前
12秒前
害怕的柠檬完成签到,获得积分10
13秒前
研友_nV2ROn发布了新的文献求助10
13秒前
风趣夜云发布了新的文献求助10
14秒前
林夕发布了新的文献求助10
14秒前
bkagyin应助liquor采纳,获得10
15秒前
16秒前
在水一方应助Yimi采纳,获得10
16秒前
16秒前
17秒前
18秒前
垃圾砂糖乙女牛永贵完成签到,获得积分10
19秒前
19秒前
Fickle完成签到,获得积分10
19秒前
上官若男应助虚心黄蜂采纳,获得10
21秒前
华仔应助苏满天采纳,获得10
21秒前
22秒前
aDou发布了新的文献求助10
23秒前
啾啾完成签到,获得积分10
23秒前
24秒前
柒月完成签到 ,获得积分10
25秒前
25秒前
syiimo完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112