PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network

计算机科学 人工智能 深度学习 规范化(社会学) 马修斯相关系数 卷积神经网络 机器学习 交互网络 人工神经网络 化学 支持向量机 人类学 生物化学 基因 社会学
作者
Xiaowen Wang,Hongming Zhu,Yizhi Jiang,Yulong Li,Chen Tang,Xiaohan Chen,Li Yunjie,Qi Liu,Liu Qin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:14
标识
DOI:10.1093/bib/bbab587
摘要

Abstract Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein–protein interaction (PPI) network with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator characteristics curve of 0.90, an area under the precision–recall curve of 0.63 and a Cohen’s Kappa of 0.53. In the ablation study, we find that using the multi-omics data and the integrated PPI network’s information both can improve the prediction results. Additionally, the case study demonstrates the consistency between PRODeepSyn and previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙子完成签到,获得积分10
3秒前
脑洞疼应助迷路惋清采纳,获得10
3秒前
alpha发布了新的文献求助10
4秒前
4秒前
5秒前
baby完成签到,获得积分10
6秒前
6秒前
121发布了新的文献求助20
6秒前
迷路千青完成签到,获得积分10
9秒前
carly发布了新的文献求助10
9秒前
鬼火发布了新的文献求助10
11秒前
Akim应助zrw采纳,获得10
13秒前
14秒前
15秒前
Orange应助hilbertbo采纳,获得10
17秒前
OvO完成签到,获得积分10
17秒前
cs完成签到,获得积分10
18秒前
18秒前
852应助小束爱吃樱桃采纳,获得10
21秒前
OvO发布了新的文献求助10
21秒前
爱在深秋完成签到,获得积分10
22秒前
无花果应助无辜秋珊采纳,获得10
25秒前
Liufgui应助发呆小蜗采纳,获得20
26秒前
Lucas完成签到,获得积分10
27秒前
31秒前
31秒前
32秒前
mepumpkin完成签到,获得积分20
33秒前
36秒前
Friday发布了新的文献求助10
36秒前
无辜秋珊发布了新的文献求助10
37秒前
Billy应助弯弯的小河采纳,获得30
38秒前
快乐仙知发布了新的文献求助20
39秒前
Evilw1an完成签到 ,获得积分10
40秒前
李岸应助思维隋采纳,获得10
41秒前
认真的火发布了新的文献求助10
43秒前
43秒前
大模型应助bofu采纳,获得10
43秒前
47秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167