Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomic features on computed tomography

接收机工作特性 肺癌 医学 特征选择 无线电技术 癌症 免疫组织化学 阶段(地层学) 核医学 病理
作者
Takehiro Shiinoki,Koya Fujimoto,Yusuke Kawazoe,Yuki Yuasa,Miki Kajima,Yuki Manabe,Taiki Ono,Tsunahiko Hirano,Kazuto Matsunaga,Hidekazu Tanaka
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ac4d43
摘要

Abstract In this study, we investigated the possibility of predicting expression levels of programmed death-ligand 1 (PD-L1) using radiomic features of intratumoral and peritumoral tumors on computed tomography (CT) images. We retrospectively analyzed 161 patients with non-small cell lung cancer. We extracted radiomics features for intratumoral and peritumoral regions on CT images. The null importance, least absolute shrinkage, and selection operator model were used to select the optimized feature subset to build the prediction models for the PD-L1 expression level. LightGBM with five-fold cross-validation was used to construct the prediction model and evaluate the receiver operating characteristics. The corresponding area under the curve (AUC) was calculated for the training and testing cohorts. The proportion of ambiguously clustered pairs was calculated based on consensus clustering to evaluate the validity of the selected features. In addition, Radscore was calculated for the training and test cohorts. For expression level of PD-L1 above 1%, prediction models that included radiomic features from the intratumoral region and a combination of radiomic features from intratumoral and peritumoral regions yielded an AUC of 0.83 and 0.87 and 0.64 and 0.74 in the training and test cohorts, respectively. In contrast, the models above 50% prediction yielded an AUC of 0.80, 0.97, and 0.74, 0.83, respectively. The selected features were divided into two subgroups based on PD-L1 expression levels ≥ 50% or ≥ 1%. Radscore was statistically higher for subgroup one than subgroup two when radiomic features for intratumoral and peritumoral regions were combined. We constructed a predictive model for PD-L1 expression level using CT images. The model using a combination of intratumoral and peritumoral radiomic features had a higher accuracy than the model with only intratumoral radiomic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极睫毛完成签到,获得积分10
刚刚
刚刚
1秒前
陶醉觅夏完成签到,获得积分10
3秒前
lxy完成签到 ,获得积分10
3秒前
4秒前
小马甲应助smile~采纳,获得10
4秒前
5秒前
李健的小迷弟应助zqy采纳,获得10
6秒前
纯真的诗兰完成签到,获得积分10
7秒前
8秒前
9秒前
Akim应助江起云采纳,获得30
9秒前
高凯璇完成签到,获得积分10
9秒前
爆米花应助zhangzhang05采纳,获得10
11秒前
听风随影发布了新的文献求助10
12秒前
12秒前
典雅雅旋完成签到 ,获得积分10
13秒前
13秒前
123完成签到,获得积分10
13秒前
15秒前
16秒前
btutou发布了新的文献求助10
16秒前
陶醉觅夏发布了新的文献求助10
17秒前
小虎同学完成签到,获得积分10
20秒前
Kry4taloL发布了新的文献求助10
21秒前
紫易完成签到,获得积分10
21秒前
清晨五点的沙滩完成签到,获得积分10
22秒前
潘文博发布了新的文献求助10
22秒前
26秒前
五月初夏完成签到,获得积分10
26秒前
wwwwwnnnnn完成签到,获得积分10
27秒前
SCIER发布了新的文献求助10
27秒前
nonkul发布了新的文献求助10
27秒前
祖f完成签到,获得积分10
28秒前
xc完成签到,获得积分10
29秒前
清都发布了新的文献求助10
30秒前
train完成签到 ,获得积分10
30秒前
31秒前
复杂不二完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323