Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomic features on computed tomography

接收机工作特性 肺癌 医学 特征选择 无线电技术 癌症 免疫组织化学 阶段(地层学) 核医学 病理
作者
Takehiro Shiinoki,Koya Fujimoto,Yusuke Kawazoe,Yuki Yuasa,Miki Kajima,Yuki Manabe,Taiki Ono,Tsunahiko Hirano,Kazuto Matsunaga,Hidekazu Tanaka
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (2): 025008-025008 被引量:6
标识
DOI:10.1088/2057-1976/ac4d43
摘要

Abstract In this study, we investigated the possibility of predicting expression levels of programmed death-ligand 1 (PD-L1) using radiomic features of intratumoral and peritumoral tumors on computed tomography (CT) images. We retrospectively analyzed 161 patients with non-small cell lung cancer. We extracted radiomic features for intratumoral and peritumoral regions on CT images. The null importance, least absolute shrinkage, and selection operator model were used to select the optimized feature subset to build the prediction models for the PD-L1 expression level. LightGBM with five-fold cross-validation was used to construct the prediction model and evaluate the receiver operating characteristics. The corresponding area under the curve (AUC) was calculated for the training and testing cohorts. The proportion of ambiguously clustered pairs was calculated based on consensus clustering to evaluate the validity of the selected features. In addition, Radscore was calculated for the training and test cohorts. For expression level of PD-L1 above 1%, prediction models that included radiomic features from the intratumoral region and a combination of radiomic features from intratumoral and peritumoral regions yielded an AUC of 0.83 and 0.87 and 0.64 and 0.74 in the training and test cohorts, respectively. In contrast, the models above 50% prediction yielded an AUC of 0.80, 0.97, and 0.74, 0.83, respectively. The selected features were divided into two subgroups based on PD-L1 expression levels≥50% or≥1%. Radscore was statistically higher for subgroup one than subgroup two when radiomic features for intratumoral and peritumoral regions were combined. We constructed a predictive model for PD-L1 expression level using CT images. The model using a combination of intratumoral and peritumoral radiomic features had a higher accuracy than the model with only intratumoral radiomic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得30
刚刚
jiajia完成签到,获得积分10
刚刚
SHAO应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
刚刚
打打应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Sci发布了新的文献求助10
1秒前
乐观的新波完成签到,获得积分10
2秒前
科研通AI6应助李创业采纳,获得10
2秒前
awen完成签到,获得积分10
3秒前
热心的灵凡应助王佳豪采纳,获得10
3秒前
完美世界应助王佳豪采纳,获得10
3秒前
3秒前
科研欣路完成签到,获得积分10
4秒前
li完成签到,获得积分10
4秒前
5秒前
5秒前
xiaoguai完成签到 ,获得积分10
5秒前
和平星完成签到 ,获得积分10
5秒前
MIN完成签到,获得积分10
5秒前
浮游应助Asen采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
勤恳易谙完成签到,获得积分10
6秒前
来年完成签到,获得积分10
6秒前
6秒前
shinian完成签到 ,获得积分10
6秒前
7秒前
小乔同学完成签到,获得积分10
7秒前
葵花籽完成签到,获得积分10
7秒前
8秒前
zzzzg完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147