Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomic features on computed tomography

接收机工作特性 肺癌 医学 特征选择 无线电技术 癌症 免疫组织化学 阶段(地层学) 核医学 病理
作者
Takehiro Shiinoki,Koya Fujimoto,Yusuke Kawazoe,Yuki Yuasa,Miki Kajima,Yuki Manabe,Taiki Ono,Tsunahiko Hirano,Kazuto Matsunaga,Hidekazu Tanaka
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (2): 025008-025008 被引量:6
标识
DOI:10.1088/2057-1976/ac4d43
摘要

Abstract In this study, we investigated the possibility of predicting expression levels of programmed death-ligand 1 (PD-L1) using radiomic features of intratumoral and peritumoral tumors on computed tomography (CT) images. We retrospectively analyzed 161 patients with non-small cell lung cancer. We extracted radiomic features for intratumoral and peritumoral regions on CT images. The null importance, least absolute shrinkage, and selection operator model were used to select the optimized feature subset to build the prediction models for the PD-L1 expression level. LightGBM with five-fold cross-validation was used to construct the prediction model and evaluate the receiver operating characteristics. The corresponding area under the curve (AUC) was calculated for the training and testing cohorts. The proportion of ambiguously clustered pairs was calculated based on consensus clustering to evaluate the validity of the selected features. In addition, Radscore was calculated for the training and test cohorts. For expression level of PD-L1 above 1%, prediction models that included radiomic features from the intratumoral region and a combination of radiomic features from intratumoral and peritumoral regions yielded an AUC of 0.83 and 0.87 and 0.64 and 0.74 in the training and test cohorts, respectively. In contrast, the models above 50% prediction yielded an AUC of 0.80, 0.97, and 0.74, 0.83, respectively. The selected features were divided into two subgroups based on PD-L1 expression levels≥50% or≥1%. Radscore was statistically higher for subgroup one than subgroup two when radiomic features for intratumoral and peritumoral regions were combined. We constructed a predictive model for PD-L1 expression level using CT images. The model using a combination of intratumoral and peritumoral radiomic features had a higher accuracy than the model with only intratumoral radiomic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助wang5945采纳,获得10
刚刚
刚刚
PANYIAO完成签到,获得积分10
刚刚
刚刚
1秒前
Orange应助Luo采纳,获得10
1秒前
李嘉衡关注了科研通微信公众号
1秒前
情怀应助高贵小海豚采纳,获得10
1秒前
2秒前
赵李锋完成签到,获得积分10
2秒前
风趣的飞荷完成签到,获得积分10
2秒前
诱导效应完成签到,获得积分10
3秒前
haha111完成签到,获得积分10
3秒前
104zw完成签到,获得积分10
3秒前
3秒前
FashionBoy应助小小何采纳,获得10
3秒前
858278343发布了新的文献求助10
4秒前
4秒前
慕青应助大内泌探009采纳,获得10
4秒前
4秒前
落寞之云发布了新的文献求助10
5秒前
6秒前
8秒前
丘比特应助一一采纳,获得10
8秒前
香蕉觅云应助HJJHJH采纳,获得10
10秒前
liuyifei发布了新的文献求助20
11秒前
tt完成签到 ,获得积分10
12秒前
13秒前
范冰冰发布了新的文献求助10
13秒前
14秒前
慕青应助yiuqiu采纳,获得10
16秒前
大成子发布了新的文献求助20
17秒前
小小何发布了新的文献求助10
17秒前
Hot完成签到,获得积分10
17秒前
18秒前
liwei完成签到,获得积分10
18秒前
18秒前
Mic应助义气凝阳采纳,获得10
18秒前
机灵寒烟完成签到,获得积分10
19秒前
不仅要发文章还有发财完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331