A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images

计算机科学 变更检测 水准点(测量) 分割 人工智能 遥感 噪音(视频) 人工神经网络 图像分割 特征提取 图像(数学) 模式识别(心理学) 地质学 地理 地图学
作者
Tao Chen,Zhiyuan Lu,Yue Yang,Yuxiang Zhang,Bo Du,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 2357-2369 被引量:64
标识
DOI:10.1109/jstars.2022.3157648
摘要

Remote sensing image change detection (RSICD) is a technique that explores the change of surface coverage in a certain time series by studying the difference between multiple remote sensing images (RSIs) collected over the same area. Traditional RSICD algorithms exhibit poor performance on complex change detection (CD) tasks. In recent years, deep learning (DL) techniques have achieved outstanding results in the fields of RSI segmentation and target recognition. In CD research, most of the methods treat multitemporal remote sensing data as one input and directly apply DL-based image segmentation theory on it while ignoring the spatio-temporal information in these images. In this article, a new siamese neural network is designed by combing an attention mechanism (Siamese_AUNet) with UNet to solve the problems of RSICD algorithms. SiameseNet encodes the feature extraction of RSIs by two branches in the siamese network, respectively. The weights are shared between these two branches in siamese networks. Subsequently, an attention mechanism is added to the model in order to improve its detection ability for changed objects. The models are then compared with conventional neural networks using three benchmark datasets. The results show that the Siamese_AUNet newly proposed in this article exhibits better performance than other standard methods when solving problems related to weak CD and noise suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Slemon完成签到,获得积分10
刚刚
谦谦姜完成签到,获得积分10
2秒前
3秒前
JINGZHANG发布了新的文献求助10
3秒前
3秒前
归海天与应助糊弄学专家采纳,获得10
3秒前
风中的青完成签到,获得积分10
4秒前
4秒前
4秒前
duxinyue关注了科研通微信公众号
5秒前
超级宇宙二踢脚关注了科研通微信公众号
5秒前
6秒前
6秒前
7秒前
务实盼海发布了新的文献求助10
7秒前
徐徐徐徐发布了新的文献求助10
8秒前
星晴遇见花海完成签到,获得积分10
8秒前
乐乐应助Rrr采纳,获得10
9秒前
难过鸿涛应助srt采纳,获得10
10秒前
11秒前
卡卡发布了新的文献求助10
11秒前
11秒前
13秒前
Jasper应助刘芸芸采纳,获得10
14秒前
m彬m彬完成签到 ,获得积分10
14秒前
15秒前
自信鑫鹏完成签到,获得积分10
15秒前
HYH完成签到,获得积分10
15秒前
Harish完成签到,获得积分10
16秒前
研友_851KE8发布了新的文献求助10
16秒前
16秒前
一段乐多发布了新的文献求助10
16秒前
16秒前
华仔完成签到,获得积分10
16秒前
刘百慧完成签到,获得积分10
16秒前
16秒前
Wyan发布了新的文献求助80
18秒前
成就映秋发布了新的文献求助30
18秒前
科研通AI2S应助坤坤采纳,获得10
18秒前
整齐芷文完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794