A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images

计算机科学 变更检测 水准点(测量) 分割 人工智能 遥感 噪音(视频) 人工神经网络 图像分割 特征提取 图像(数学) 模式识别(心理学) 地质学 地理 地图学
作者
Tao Chen,Zhiyuan Lu,Yue Yang,Yuxiang Zhang,Bo Du,Antonio Plaza
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 2357-2369 被引量:64
标识
DOI:10.1109/jstars.2022.3157648
摘要

Remote sensing image change detection (RSICD) is a technique that explores the change of surface coverage in a certain time series by studying the difference between multiple remote sensing images (RSIs) collected over the same area. Traditional RSICD algorithms exhibit poor performance on complex change detection (CD) tasks. In recent years, deep learning (DL) techniques have achieved outstanding results in the fields of RSI segmentation and target recognition. In CD research, most of the methods treat multitemporal remote sensing data as one input and directly apply DL-based image segmentation theory on it while ignoring the spatio-temporal information in these images. In this article, a new siamese neural network is designed by combing an attention mechanism (Siamese_AUNet) with UNet to solve the problems of RSICD algorithms. SiameseNet encodes the feature extraction of RSIs by two branches in the siamese network, respectively. The weights are shared between these two branches in siamese networks. Subsequently, an attention mechanism is added to the model in order to improve its detection ability for changed objects. The models are then compared with conventional neural networks using three benchmark datasets. The results show that the Siamese_AUNet newly proposed in this article exhibits better performance than other standard methods when solving problems related to weak CD and noise suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxy完成签到,获得积分10
1秒前
1秒前
2秒前
潇洒哥哥发布了新的文献求助10
2秒前
XudongHou完成签到,获得积分10
3秒前
nert发布了新的文献求助10
5秒前
buno应助拼搏的天薇采纳,获得10
5秒前
song发布了新的文献求助10
5秒前
5秒前
善学以致用应助哒哒哒采纳,获得10
6秒前
专注的采梦完成签到 ,获得积分10
6秒前
bkagyin应助西门性冷淡采纳,获得10
6秒前
领导范儿应助xing采纳,获得10
10秒前
潇洒哥哥完成签到,获得积分10
10秒前
13秒前
简单的凝蕊完成签到,获得积分10
13秒前
烟花应助小禾一定行采纳,获得10
13秒前
novice完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
Akim应助nert采纳,获得10
16秒前
16秒前
TheGala发布了新的文献求助10
17秒前
lljx完成签到 ,获得积分10
17秒前
科目三应助歆兴欣采纳,获得10
17秒前
hhhh完成签到,获得积分10
17秒前
hang完成签到,获得积分10
17秒前
yuan发布了新的文献求助30
18秒前
uuuu完成签到 ,获得积分10
19秒前
后会无期发布了新的文献求助10
21秒前
酷酷菲音完成签到,获得积分10
21秒前
EadonChen完成签到,获得积分10
21秒前
xing发布了新的文献求助10
21秒前
23秒前
Mizoresuki应助胖大海采纳,获得30
24秒前
25秒前
WuYiHHH完成签到,获得积分10
26秒前
27秒前
三黑猫应助鹿雅彤采纳,获得10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228477
求助须知:如何正确求助?哪些是违规求助? 2876197
关于积分的说明 8194322
捐赠科研通 2543356
什么是DOI,文献DOI怎么找? 1373691
科研通“疑难数据库(出版商)”最低求助积分说明 646816
邀请新用户注册赠送积分活动 621402