DPM-LES investigation on flow field dynamic and acoustic characteristics of a twin-fluid nozzle by multi-field coupling method

喷嘴 湍流 机械 大涡模拟 阀体孔板 联轴节(管道) 材料科学 流量(数学) 分离涡模拟 物理 机械工程 热力学 工程类 雷诺平均Navier-Stokes方程 冶金
作者
Bin Chen,Yunhu Lu,Wenying Li,Xianyong Dai,Xia Hua,Jingjing Xu,Zesheng Wang,Cong Zhang,Dianrong Gao,Yanbiao Li,Li Zhang
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:192: 122927-122927 被引量:23
标识
DOI:10.1016/j.ijheatmasstransfer.2022.122927
摘要

Dust particle pollution endanger human health and cause safety hazards in industry. Twin-fluid atomization technology plays an important role in reducing the pollution of dust particles. In the current study, based on the Large Eddy Simulation (LES) model, the Discrete Phase Model (DPM) model and the Ffowcs Williams-Hawkings (FW-H) model, a fluid-solid-acoustic multi-physics coupling DPM-LES model is proposed, and the numerical simulation results under the multi-field coupling are compared and verified by experiments. Then, through the numerical simulation method, the flow field dynamic characteristics and acoustic characteristics inside and outside the gas-liquid twin-fluid nozzle (TFN) under different operating parameters and self-excited vibrating cavity (SVC) structure parameters are studied. Because the high-frequency vibration of the SVC caused by high gas flow leads to local severe turbulence and the rebound effect between the fluid and the SVC, the dynamic pressure value in most areas of the nozzle reached more than 7000 Pa. Due to the resistance of the air in the flow field and the friction and entrainment between the gas-liquid two phases during the movement, the axial distance in the atomizing flow field with a velocity exceeding 2 m/s can be as far as 2.13m when orifice depth L =1.0 mm. The SPL of the nozzle is gradually attenuated in the process of space propagation. The increased gas flow enhances turbulence, which intensifies nozzle noise. In this paper, the DPM-LES investigation on flow field dynamic and acoustic characteristics of a TFN by multi-field coupling method are studied, which can lay a theoretical foundation for the optimal design of TFN in engineering and provide a certain reference for the reduce of dust particle pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈可乐发布了新的文献求助30
1秒前
patience完成签到,获得积分20
1秒前
1秒前
2秒前
山大琦子发布了新的文献求助10
2秒前
hug沅沅发布了新的文献求助10
2秒前
阿谈完成签到 ,获得积分10
3秒前
暮商发布了新的文献求助10
3秒前
4秒前
yznfly应助蟹黄小笼包采纳,获得50
4秒前
photodetectors完成签到,获得积分10
4秒前
KYT2025发布了新的文献求助10
5秒前
白桃味的夏完成签到,获得积分10
5秒前
CipherSage应助YY采纳,获得10
5秒前
王琦完成签到 ,获得积分10
5秒前
陌小石发布了新的文献求助10
5秒前
tutu发布了新的文献求助10
6秒前
ww发布了新的文献求助10
6秒前
海的呼唤发布了新的文献求助10
7秒前
7秒前
贺光萌发布了新的文献求助10
7秒前
SciGPT应助大大大忽悠采纳,获得10
7秒前
Wule完成签到,获得积分10
8秒前
石榴姐姐发布了新的文献求助10
8秒前
上官若男应助826871896采纳,获得10
8秒前
脑洞疼应助山大琦子采纳,获得10
9秒前
qiqiqi完成签到,获得积分10
9秒前
忘的澜完成签到,获得积分10
9秒前
olivia发布了新的文献求助10
9秒前
9秒前
怪点衣衣完成签到,获得积分10
9秒前
耍酷的学姐完成签到,获得积分10
11秒前
11秒前
asdfzxcv应助咚咚采纳,获得10
11秒前
KYT2025完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
Demon724发布了新的文献求助10
13秒前
zhuojiu发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798