MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation

计算机科学 分割 人工智能 编码器 模式识别(心理学) 变压器 卷积神经网络 图像分割 量子力学 操作系统 物理 电压
作者
Weisheng Li,Yinghui Zhao,Feiyan Li,Linhong Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:247: 108824-108824 被引量:28
标识
DOI:10.1016/j.knosys.2022.108824
摘要

Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class inconsistency). Second, subject to conditions such as motion blur and light reflection, polyps and their surrounding background have a high degree of similarity (inter-class indistinction). To overcome intra-class inconsistency and inter-class indistinction, we propose a multi-information aggregation network (MIA-Net) combining transformer and convolutional features. We use the transformer encoder to extract powerful global features and better localize polyps with an advanced global contextual feature extraction module. This approach reduces the influence of intra-class inconsistency. In addition, we capture fine-grained local texture features using the convolutional encoder and aggregate them with high-level and low-level information extracted by the transformer. This rich feature information makes the model more sensitive to edge information and alleviates inter-class indistinction. We evaluated the new approach quantitatively and qualitatively on five datasets using six metrics. The experimental results revealed that MIA-Net has good fitting ability and strong generalization ability. In addition, MIA-Net significantly improved the accuracy of polyp segmentation and outperformed the current state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ally完成签到,获得积分10
刚刚
li完成签到,获得积分20
1秒前
CH3N发布了新的文献求助30
1秒前
绿麦盲区完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
1234567890完成签到,获得积分10
3秒前
奋斗的人雄完成签到,获得积分10
3秒前
李优秀发布了新的文献求助10
4秒前
直率翠绿完成签到,获得积分10
5秒前
趋交发布了新的文献求助10
5秒前
6秒前
库库林白夜完成签到,获得积分10
7秒前
wang完成签到,获得积分10
7秒前
8秒前
8秒前
sdl发布了新的文献求助10
9秒前
gesg发布了新的文献求助10
9秒前
9秒前
昏睡的蟠桃应助小楼采纳,获得200
10秒前
清爽乐菱应助skycrygg采纳,获得20
10秒前
10秒前
wang发布了新的文献求助10
10秒前
12秒前
雪花精灵完成签到,获得积分10
12秒前
木又权发布了新的文献求助10
13秒前
13秒前
隐形曼青应助高兴的海亦采纳,获得10
13秒前
nine2652发布了新的文献求助10
13秒前
彭于彦祖应助高兴的海亦采纳,获得30
13秒前
廖晨曦发布了新的文献求助10
13秒前
卡卡西应助高兴的海亦采纳,获得30
14秒前
14秒前
Hello应助高兴的海亦采纳,获得30
14秒前
14秒前
彭于彦祖应助高兴的海亦采纳,获得30
14秒前
小二郎应助高兴的海亦采纳,获得10
14秒前
14秒前
小二郎应助gaoyi12356采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987