MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation

计算机科学 分割 人工智能 编码器 模式识别(心理学) 变压器 卷积神经网络 图像分割 物理 量子力学 电压 操作系统
作者
Weisheng Li,Yinghui Zhao,Feiyan Li,Linhong Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:247: 108824-108824 被引量:28
标识
DOI:10.1016/j.knosys.2022.108824
摘要

Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class inconsistency). Second, subject to conditions such as motion blur and light reflection, polyps and their surrounding background have a high degree of similarity (inter-class indistinction). To overcome intra-class inconsistency and inter-class indistinction, we propose a multi-information aggregation network (MIA-Net) combining transformer and convolutional features. We use the transformer encoder to extract powerful global features and better localize polyps with an advanced global contextual feature extraction module. This approach reduces the influence of intra-class inconsistency. In addition, we capture fine-grained local texture features using the convolutional encoder and aggregate them with high-level and low-level information extracted by the transformer. This rich feature information makes the model more sensitive to edge information and alleviates inter-class indistinction. We evaluated the new approach quantitatively and qualitatively on five datasets using six metrics. The experimental results revealed that MIA-Net has good fitting ability and strong generalization ability. In addition, MIA-Net significantly improved the accuracy of polyp segmentation and outperformed the current state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJQ发布了新的文献求助10
刚刚
yyq617569158完成签到,获得积分20
2秒前
liu发布了新的文献求助10
2秒前
heilong完成签到,获得积分10
4秒前
6秒前
7秒前
赘婿应助liu采纳,获得10
10秒前
zcs完成签到,获得积分10
10秒前
拾起完成签到,获得积分10
10秒前
bailin发布了新的文献求助10
12秒前
轵关宣方发布了新的文献求助10
12秒前
15秒前
16秒前
Baiyu完成签到,获得积分10
17秒前
18秒前
So发布了新的文献求助10
18秒前
18秒前
BowieHuang应助拾起采纳,获得10
18秒前
19秒前
爬不起来发布了新的文献求助10
20秒前
科研通AI2S应助Lynn采纳,获得10
21秒前
歇洛克完成签到,获得积分20
21秒前
21秒前
大意的语琴发布了新的文献求助100
22秒前
轵关宣方完成签到,获得积分10
23秒前
bailin完成签到,获得积分10
23秒前
星月发布了新的文献求助10
23秒前
if完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
JERRY完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
painting完成签到,获得积分10
32秒前
乐乐应助小乐采纳,获得10
32秒前
34秒前
34秒前
35秒前
36秒前
36秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580624
求助须知:如何正确求助?哪些是违规求助? 4665515
关于积分的说明 14756188
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528096
邀请新用户注册赠送积分活动 1497399
关于科研通互助平台的介绍 1466355