MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation

计算机科学 分割 人工智能 编码器 模式识别(心理学) 变压器 卷积神经网络 图像分割 物理 量子力学 电压 操作系统
作者
Weisheng Li,Yinghui Zhao,Feiyan Li,Linhong Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:247: 108824-108824 被引量:28
标识
DOI:10.1016/j.knosys.2022.108824
摘要

Accurate polyp segmentation is of immense importance for the early diagnosis and treatment of colorectal cancer. However, polyp segmentation is a difficult task, and most current methods suffer from two challenges. First, individual polyps widely vary in shape, size, and location (intra-class inconsistency). Second, subject to conditions such as motion blur and light reflection, polyps and their surrounding background have a high degree of similarity (inter-class indistinction). To overcome intra-class inconsistency and inter-class indistinction, we propose a multi-information aggregation network (MIA-Net) combining transformer and convolutional features. We use the transformer encoder to extract powerful global features and better localize polyps with an advanced global contextual feature extraction module. This approach reduces the influence of intra-class inconsistency. In addition, we capture fine-grained local texture features using the convolutional encoder and aggregate them with high-level and low-level information extracted by the transformer. This rich feature information makes the model more sensitive to edge information and alleviates inter-class indistinction. We evaluated the new approach quantitatively and qualitatively on five datasets using six metrics. The experimental results revealed that MIA-Net has good fitting ability and strong generalization ability. In addition, MIA-Net significantly improved the accuracy of polyp segmentation and outperformed the current state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助琪琪采纳,获得10
刚刚
优雅的白筠完成签到,获得积分20
刚刚
李爱国应助背后的涵菱采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
jiangwei完成签到,获得积分10
3秒前
Orange应助慕凝采纳,获得10
3秒前
3秒前
共享精神应助深情衬衫采纳,获得10
4秒前
活力皮皮虾关注了科研通微信公众号
5秒前
11完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
yyyyyy发布了新的文献求助10
7秒前
阿紫完成签到,获得积分10
7秒前
邢至森完成签到,获得积分10
8秒前
8秒前
乐乐应助luk采纳,获得10
9秒前
9秒前
隐形曼青应助优雅的白筠采纳,获得10
11秒前
11秒前
科研aaa完成签到,获得积分10
12秒前
完美世界应助暖风采纳,获得10
12秒前
han完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
明亮闭月完成签到,获得积分10
13秒前
张浩大帅哥完成签到,获得积分10
14秒前
16秒前
琪琪发布了新的文献求助10
16秒前
慕凝发布了新的文献求助10
16秒前
安静的从梦完成签到 ,获得积分10
16秒前
完美世界应助Lalala采纳,获得30
16秒前
16秒前
DDD应助jovial采纳,获得10
17秒前
深情衬衫发布了新的文献求助10
18秒前
18秒前
温暖的寻雪完成签到 ,获得积分10
18秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814