单层
材料科学
扫描隧道显微镜
堆积
云纹
超晶格
凝聚态物理
格子(音乐)
带隙
联轴节(管道)
退火(玻璃)
电子结构
光电子学
纳米技术
光学
化学
物理
复合材料
有机化学
声学
作者
Zehui Zhang,Jingyi Hu,Pengfei Yang,Shuangyuan Pan,Wenzhi Quan,Ning Li,Lijie Zhu,Yanfeng Zhang
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (20): 7720-7728
被引量:1
摘要
Moiré superlattices formed by the stacking of two-dimensional (2D) transition metal dichalcogenide lattices on substrate lattices have been reported to imply a crucial effect on the electronic properties of 2D materials (e.g., band gap, doping level) and their physical properties. Herein, we report the direct observation of various striped moiré superstructures for monolayer WSe2 on the Au(100) facet, due to the lattice symmetry difference and relative rotation. The periodicities or the inter-stripe distances for striped superstructures fall in a range of 0-15 nm or 0-3 nm after relatively low or high temperature annealing processes, respectively. The diverse striped moiré superstructures then served as perfect platforms for examining the electronic band gap tunability for monolayer WSe2/Au(100) by using scanning tunneling microscopy/spectroscopy (STM/STS), which increases from ∼1.59 eV to ∼1.90 eV with increasing moiré periods from ∼1.62 to ∼11.58 nm. The coupling strength of monolayer WSe2/Au(100) with various striped patterns is thus proposed to be modulated by the different relative orientations. This work should hereby provide some fundamental references for the domain orientation control, interface coupling strength, and application explorations of two-dimensional layered materials in future electronics and optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI