CTDS: Centralized Teacher With Decentralized Student for Multiagent Reinforcement Learning

强化学习 钢筋 计算机科学 多智能体系统 数学教育 心理学 人工智能 社会心理学
作者
Jian Zhao,Xunhan Hu,Mingyu Yang,Wengang Zhou,Jiangcheng Zhu,Houqiang Li
出处
期刊:IEEE transactions on games [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 140-150 被引量:5
标识
DOI:10.1109/tg.2022.3232390
摘要

Due to the partial observability and communication constraints in many multiagent reinforcement learning (MARL) tasks, centralized training with decentralized execution (CTDE) has become one of the most widely used MARL paradigms. In CTDE, centralized information is dedicated to learning the allocation of the team reward with a mixing network while the learning of individual Q -values is usually based on local observations. The insufficient utility of global observation will degrade performance in challenging environments. To this end, this work proposes a novel Centralized Teacher with a Decentralized Student (CTDS) framework, which consists of a teacher model and a student model. Specifically, the teacher model allocates the team reward by learning individual Q -values conditioned on global observation while the student model utilizes the partial observations to approximate the Q -values estimated by the teacher model. In this way, CTDS balances the full utilization of global observation during training and the feasibility of decentralized execution for online inference. Our CTDS framework is generic, which is ready to be applied upon existing CTDE methods to boost their performance. We conduct experiments on a challenging set of StarCraft II micromanagement tasks to test the effectiveness of our method and the results show that CTDS outperforms the existing value-based MARL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
Lucas应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
doc.wei发布了新的文献求助10
11秒前
向日葵应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
zhi完成签到,获得积分10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
李大姐发布了新的文献求助10
13秒前
冯冯冯完成签到 ,获得积分10
13秒前
T123456789完成签到,获得积分10
13秒前
羽宇完成签到,获得积分10
16秒前
万里完成签到,获得积分10
19秒前
小白完成签到,获得积分10
20秒前
双夏完成签到 ,获得积分10
20秒前
独特笙完成签到 ,获得积分10
20秒前
JERRI完成签到,获得积分10
22秒前
22秒前
科研通AI2S应助gdh采纳,获得10
22秒前
情怀应助qing采纳,获得10
24秒前
wangbq发布了新的文献求助10
24秒前
橙子皮完成签到,获得积分10
28秒前
32秒前
爱学习的悦悦子完成签到 ,获得积分10
33秒前
从南到北发布了新的文献求助50
35秒前
冷傲以珊完成签到,获得积分10
35秒前
doc.wei完成签到 ,获得积分10
35秒前
36秒前
36秒前
38秒前
gdh发布了新的文献求助10
40秒前
Airc完成签到,获得积分10
40秒前
lan发布了新的文献求助10
43秒前
gc完成签到,获得积分10
44秒前
45秒前
46秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043