Resolving heterogeneity in obsessive–compulsive disorder through individualized differential structural covariance network analysis

神经影像学 鉴别诊断 神经科学 心理学 协方差 强迫症 医学 精神科 病理 数学 统计
作者
Shaoqiang Han,Yinhuan Xu,Hui‐Rong Guo,Keke Fang,Yarui Wei,Liang Liu,Junying Cheng,Yong Zhang,Jingliang Cheng
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (5): 1659-1668 被引量:28
标识
DOI:10.1093/cercor/bhac163
摘要

Abstract Background The high heterogeneity of obsessive–compulsive disorder (OCD) denies attempts of traditional case–control studies to derive neuroimaging biomarkers indicative of precision diagnosis and treatment. Methods To handle the heterogeneity, we uncovered subject-level altered structural covariance by adopting individualized differential structural covariance network (IDSCN) analysis. The IDSCN measures how structural covariance edges in a patient deviated from those in matched healthy controls (HCs) yielding subject-level differential edges. One hundred patients with OCD and 106 HCs were recruited and whose T1-weighted anatomical images were acquired. We obtained individualized differential edges and then clustered patients into subtypes based on these edges. Results Patients presented tremendously low overlapped altered edges while frequently shared altered edges within subcortical–cerebellum network. Two robust neuroanatomical subtypes were identified. Subtype 1 presented distributed altered edges while subtype 2 presented decreased edges between default mode network and motor network compared with HCs. Altered edges in subtype 1 predicted the total Yale-Brown Obsessive Compulsive Scale score while that in subtype 2 could not. Conclusions We depict individualized structural covariance aberrance and identify that altered connections within subcortical–cerebellum network are shared by most patients with OCD. These 2 subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of OCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七个丸子发布了新的文献求助10
刚刚
2秒前
量子星尘发布了新的文献求助10
2秒前
scimaker发布了新的文献求助10
3秒前
3秒前
light发布了新的文献求助10
4秒前
细腻的山水完成签到 ,获得积分10
4秒前
孙嘉畯完成签到 ,获得积分10
5秒前
5秒前
润润轩轩发布了新的文献求助10
6秒前
6秒前
糖葫芦完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助wgl200212采纳,获得10
6秒前
7秒前
陈陈陈完成签到,获得积分10
7秒前
7秒前
李健应助不是二次元采纳,获得10
7秒前
8秒前
坚强煜城完成签到,获得积分10
8秒前
赘婿应助眯眯眼采纳,获得10
8秒前
李健应助pooh采纳,获得10
8秒前
桐桐应助light采纳,获得10
9秒前
LeeChanmn发布了新的文献求助10
9秒前
852应助小迷糊采纳,获得10
9秒前
Minus完成签到,获得积分10
9秒前
左囧完成签到,获得积分10
9秒前
阿浩完成签到,获得积分10
11秒前
张小哥12发布了新的文献求助30
11秒前
11秒前
合适绮完成签到,获得积分10
11秒前
11秒前
酸菜余完成签到,获得积分10
11秒前
科目三应助争取少吃点采纳,获得10
11秒前
12秒前
NoGtime发布了新的文献求助10
12秒前
坚强煜城发布了新的文献求助10
12秒前
Cassie发布了新的文献求助20
12秒前
大个应助可靠的冰萍采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718