Learning Discriminative Cross-Modality Features for RGB-D Saliency Detection

RGB颜色模型 人工智能 判别式 模式识别(心理学) 计算机科学 相关性 模态(人机交互) 特征(语言学) 计算机视觉 串联(数学) 像素 光学(聚焦) 分割 数学 组合数学 语言学 光学 物理 哲学 几何学
作者
Fengyun Wang,Jinshan Pan,Shoukun Xu,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1285-1297 被引量:88
标识
DOI:10.1109/tip.2022.3140606
摘要

How to explore useful information from depth is the key success of the RGB-D saliency detection methods. While the RGB and depth images are from different domains, a modality gap will lead to unsatisfactory results for simple feature concatenation. Towards better performance, most methods focus on bridging this gap and designing different cross-modal fusion modules for features, while ignoring explicitly extracting some useful consistent information from them. To overcome this problem, we develop a simple yet effective RGB-D saliency detection method by learning discriminative cross-modality features based on the deep neural network. The proposed method first learns modality-specific features for RGB and depth inputs. And then we separately calculate the correlations of every pixel-pair in a cross-modality consistent way, i.e., the distribution ranges are consistent for the correlations calculated based on features extracted from RGB (RGB correlation) or depth inputs (depth correlation). From different perspectives, color or spatial, the RGB and depth correlations end up at the same point to depict how tightly each pixel-pair is related. Secondly, to complemently gather RGB and depth information, we propose a novel correlation-fusion to fuse RGB and depth correlations, resulting in a cross-modality correlation. Finally, the features are refined with both long-range cross-modality correlations and local depth correlations to predict salient maps. In which, the long-range cross-modality correlation provides context information for accurate localization, and the local depth correlation keeps good subtle structures for fine segmentation. In addition, a lightweight DepthNet is designed for efficient depth feature extraction. We solve the proposed network in an end-to-end manner. Both quantitative and qualitative experimental results demonstrate the proposed algorithm achieves favorable performance against state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaiwk完成签到,获得积分10
刚刚
感谢小小转发科研通微信,获得积分50
刚刚
科研通AI5应助知性的尔曼采纳,获得10
1秒前
1秒前
鲨鱼鲨鱼鲨鱼完成签到,获得积分10
1秒前
2秒前
皓月星辰完成签到,获得积分10
2秒前
子车茗应助111采纳,获得10
2秒前
香蕉觅云应助汪三十采纳,获得10
2秒前
2秒前
月亮发布了新的文献求助10
3秒前
ailuming发布了新的文献求助10
3秒前
感谢缥缈的魔镜转发科研通微信,获得积分50
3秒前
3秒前
lily发布了新的文献求助10
3秒前
4秒前
112完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
小明同学发布了新的文献求助10
7秒前
Micheal发布了新的文献求助10
7秒前
7秒前
7秒前
感谢HouYv转发科研通微信,获得积分50
8秒前
简单灵凡发布了新的文献求助10
9秒前
出门见喜发布了新的文献求助10
9秒前
感谢张茜转发科研通微信,获得积分50
11秒前
芒果与鱼完成签到,获得积分10
12秒前
不再褪色发布了新的文献求助10
12秒前
purplemoon发布了新的文献求助10
12秒前
高高可乐发布了新的文献求助20
12秒前
13秒前
14秒前
14秒前
感谢WU转发科研通微信,获得积分50
14秒前
wanci应助小明同学采纳,获得10
15秒前
彭于晏应助出门见喜采纳,获得10
15秒前
潘森爱科研完成签到,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814