Idiopathic Pulmonary Fibrosis Mortality Risk Prediction Based on Artificial Intelligence: The CTPF Model

DLCO公司 特发性肺纤维化 医学 阶段(地层学) 人工智能 纤维化 肺功能测试 内科学 机器学习 肺功能 计算机科学 扩散能力 生物 古生物学
作者
Xuening Wu,Chengsheng Yin,Xianqiu Chen,Yuan Zhang,Yiliang Su,Jingyun Shi,Dong Weng,Xing Jiang,Aihong Zhang,Wenqiang Zhang,Huiping Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:13 被引量:10
标识
DOI:10.3389/fphar.2022.878764
摘要

Background: Idiopathic pulmonary fibrosis (IPF) needs a precise prediction method for its prognosis. This study took advantage of artificial intelligence (AI) deep learning to develop a new mortality risk prediction model for IPF patients. Methods: We established an artificial intelligence honeycomb segmentation system that segmented the honeycomb tissue area automatically from 102 manually labeled (by radiologists) cases of IPF patients' CT images. The percentage of honeycomb in the lung was calculated as the CT fibrosis score (CTS). The severity of the patients was evaluated by pulmonary function and physiological feature (PF) parameters (including FVC%pred, DLco%pred, SpO2%, age, and gender). Another 206 IPF cases were randomly divided into a training set (n = 165) and a verification set (n = 41) to calculate the fibrosis percentage in each case by the AI system mentioned previously. Then, using a competing risk (Fine-Gray) proportional hazards model, a risk score model was created according to the training set's patient data and used the validation data set to validate this model. Result: The final risk prediction model (CTPF) was established, and it included the CT stages and the PF (pulmonary function and physiological features) grades. The CT stages were defined into three stages: stage I (CTS≤5), stage II (5 < CTS<25), and stage III (≥25). The PF grades were classified into mild (a, 0-3 points), moderate (b, 4-6 points), and severe (c, 7-10 points). The AUC index and Briers scores at 1, 2, and 3 years in the training set were as follows: 74.3 [63.2,85.4], 8.6 [2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and 72.8 [58.3,87.3], 18.2 [11.9,24.6]. The results of the validation sets were similar and suggested that high-risk patients had significantly higher mortality rates. Conclusion: This CTPF model with AI technology can predict mortality risk in IPF precisely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_Z1eelZ发布了新的文献求助10
1秒前
Fanfan完成签到 ,获得积分10
1秒前
cc发布了新的文献求助10
1秒前
宓天问发布了新的文献求助10
1秒前
蔷薇之花发布了新的文献求助10
1秒前
Bizibili完成签到,获得积分10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
领导范儿应助啊啊啊啊采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
3秒前
无花果应助科研通管家采纳,获得10
3秒前
TiO2完成签到 ,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
CyrusSo524应助科研通管家采纳,获得10
3秒前
young应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得30
3秒前
3秒前
研友_Y59785应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
开放凡桃发布了新的文献求助10
4秒前
旺大财发布了新的文献求助10
5秒前
cc发布了新的文献求助10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060