Idiopathic Pulmonary Fibrosis Mortality Risk Prediction Based on Artificial Intelligence: The CTPF Model

DLCO公司 特发性肺纤维化 医学 阶段(地层学) 人工智能 纤维化 肺功能测试 内科学 机器学习 肺功能 计算机科学 扩散能力 生物 古生物学
作者
Xuening Wu,Chengsheng Yin,Xianqiu Chen,Yuan Zhang,Yiliang Su,Jingyun Shi,Dong Weng,Xing Jiang,Aihong Zhang,Wenqiang Zhang,Huiping Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:10
标识
DOI:10.3389/fphar.2022.878764
摘要

Background: Idiopathic pulmonary fibrosis (IPF) needs a precise prediction method for its prognosis. This study took advantage of artificial intelligence (AI) deep learning to develop a new mortality risk prediction model for IPF patients. Methods: We established an artificial intelligence honeycomb segmentation system that segmented the honeycomb tissue area automatically from 102 manually labeled (by radiologists) cases of IPF patients' CT images. The percentage of honeycomb in the lung was calculated as the CT fibrosis score (CTS). The severity of the patients was evaluated by pulmonary function and physiological feature (PF) parameters (including FVC%pred, DLco%pred, SpO2%, age, and gender). Another 206 IPF cases were randomly divided into a training set (n = 165) and a verification set (n = 41) to calculate the fibrosis percentage in each case by the AI system mentioned previously. Then, using a competing risk (Fine-Gray) proportional hazards model, a risk score model was created according to the training set's patient data and used the validation data set to validate this model. Result: The final risk prediction model (CTPF) was established, and it included the CT stages and the PF (pulmonary function and physiological features) grades. The CT stages were defined into three stages: stage I (CTS≤5), stage II (5 < CTS<25), and stage III (≥25). The PF grades were classified into mild (a, 0-3 points), moderate (b, 4-6 points), and severe (c, 7-10 points). The AUC index and Briers scores at 1, 2, and 3 years in the training set were as follows: 74.3 [63.2,85.4], 8.6 [2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and 72.8 [58.3,87.3], 18.2 [11.9,24.6]. The results of the validation sets were similar and suggested that high-risk patients had significantly higher mortality rates. Conclusion: This CTPF model with AI technology can predict mortality risk in IPF precisely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Trival完成签到 ,获得积分10
刚刚
蓝天发布了新的文献求助10
刚刚
1秒前
1秒前
凝黛完成签到,获得积分10
1秒前
moumouchen发布了新的文献求助10
1秒前
道阻且长发布了新的文献求助10
2秒前
5秒前
felix发布了新的文献求助10
5秒前
柳觅夏完成签到,获得积分10
6秒前
felix发布了新的文献求助10
6秒前
felix发布了新的文献求助10
6秒前
felix发布了新的文献求助10
6秒前
felix发布了新的文献求助10
6秒前
8秒前
sean发布了新的文献求助10
8秒前
9秒前
孙兆杰发布了新的文献求助20
9秒前
酷波er应助叁壹捌采纳,获得10
9秒前
乐生发布了新的文献求助10
11秒前
11秒前
烊紫儿完成签到,获得积分10
12秒前
良辰应助xiaobai采纳,获得10
13秒前
ly完成签到 ,获得积分10
14秒前
15秒前
叁壹捌完成签到,获得积分10
15秒前
ruihong发布了新的文献求助10
15秒前
GuSiwen完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
18秒前
20秒前
李健的小迷弟应助CY采纳,获得10
20秒前
21秒前
21秒前
莲蓬发布了新的文献求助20
22秒前
23秒前
一匹黑狼发布了新的文献求助30
23秒前
李爱国应助迅速灵竹采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999