亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Idiopathic Pulmonary Fibrosis Mortality Risk Prediction Based on Artificial Intelligence: The CTPF Model

DLCO公司 特发性肺纤维化 医学 阶段(地层学) 人工智能 纤维化 肺功能测试 内科学 机器学习 肺功能 计算机科学 扩散能力 生物 古生物学
作者
Xuening Wu,Chengsheng Yin,Xianqiu Chen,Yuan Zhang,Yiliang Su,Jingyun Shi,Dong Weng,Xing Jiang,Aihong Zhang,Wenqiang Zhang,Huiping Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:13 被引量:10
标识
DOI:10.3389/fphar.2022.878764
摘要

Background: Idiopathic pulmonary fibrosis (IPF) needs a precise prediction method for its prognosis. This study took advantage of artificial intelligence (AI) deep learning to develop a new mortality risk prediction model for IPF patients. Methods: We established an artificial intelligence honeycomb segmentation system that segmented the honeycomb tissue area automatically from 102 manually labeled (by radiologists) cases of IPF patients' CT images. The percentage of honeycomb in the lung was calculated as the CT fibrosis score (CTS). The severity of the patients was evaluated by pulmonary function and physiological feature (PF) parameters (including FVC%pred, DLco%pred, SpO2%, age, and gender). Another 206 IPF cases were randomly divided into a training set (n = 165) and a verification set (n = 41) to calculate the fibrosis percentage in each case by the AI system mentioned previously. Then, using a competing risk (Fine-Gray) proportional hazards model, a risk score model was created according to the training set's patient data and used the validation data set to validate this model. Result: The final risk prediction model (CTPF) was established, and it included the CT stages and the PF (pulmonary function and physiological features) grades. The CT stages were defined into three stages: stage I (CTS≤5), stage II (5 < CTS<25), and stage III (≥25). The PF grades were classified into mild (a, 0-3 points), moderate (b, 4-6 points), and severe (c, 7-10 points). The AUC index and Briers scores at 1, 2, and 3 years in the training set were as follows: 74.3 [63.2,85.4], 8.6 [2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and 72.8 [58.3,87.3], 18.2 [11.9,24.6]. The results of the validation sets were similar and suggested that high-risk patients had significantly higher mortality rates. Conclusion: This CTPF model with AI technology can predict mortality risk in IPF precisely.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
MchemG应助TXZ06采纳,获得30
5秒前
17秒前
20秒前
简宁完成签到,获得积分10
21秒前
TXZ06完成签到,获得积分10
23秒前
李佳怡发布了新的文献求助10
26秒前
28秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
Amoro发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
48秒前
1分钟前
李佳怡完成签到,获得积分10
1分钟前
1分钟前
Amoro完成签到,获得积分10
1分钟前
东溟渔夫发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
香蕉觅云应助xzy998采纳,获得50
1分钟前
1分钟前
1分钟前
清风明月完成签到 ,获得积分10
1分钟前
haprier完成签到 ,获得积分10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
taku完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
科研通AI2S应助daizao采纳,获得30
3分钟前
G.D完成签到 ,获得积分10
3分钟前
Juse332发布了新的文献求助10
4分钟前
东溟渔夫发布了新的文献求助10
4分钟前
斯文的访烟完成签到,获得积分10
4分钟前
自由的雅旋完成签到 ,获得积分10
4分钟前
啾啾尼泊尔完成签到,获得积分10
5分钟前
gszy1975完成签到,获得积分10
5分钟前
烟花应助哈哈哈哈嗝屁采纳,获得30
5分钟前
香蕉觅云应助清泉采纳,获得10
5分钟前
5分钟前
5分钟前
xzy998发布了新的文献求助50
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449