Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions

计算机科学 成对比较 任务(项目管理) 代表(政治) 编码器 节点(物理) 图形 钥匙(锁) 机器学习 人工智能 特征学习 理论计算机科学 结构工程 政治 操作系统 政治学 工程类 经济 管理 法学 计算机安全
作者
Xiaorui Su,Lun Hu,Zhu‐Hong You,Pengwei Hu,Bo-Wei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:70
标识
DOI:10.1093/bib/bbac140
摘要

Abstract Drug–drug interactions (DDIs) are known as the main cause of life-threatening adverse events, and their identification is a key task in drug development. Existing computational algorithms mainly solve this problem by using advanced representation learning techniques. Though effective, few of them are capable of performing their tasks on biomedical knowledge graphs (KGs) that provide more detailed information about drug attributes and drug-related triple facts. In this work, an attention-based KG representation learning framework, namely DDKG, is proposed to fully utilize the information of KGs for improved performance of DDI prediction. In particular, DDKG first initializes the representations of drugs with their embeddings derived from drug attributes with an encoder–decoder layer, and then learns the representations of drugs by recursively propagating and aggregating first-order neighboring information along top-ranked network paths determined by neighboring node embeddings and triple facts. Last, DDKG estimates the probability of being interacting for pairwise drugs with their representations in an end-to-end manner. To evaluate the effectiveness of DDKG, extensive experiments have been conducted on two practical datasets with different sizes, and the results demonstrate that DDKG is superior to state-of-the-art algorithms on the DDI prediction task in terms of different evaluation metrics across all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助知性的夏之采纳,获得10
刚刚
Mandy完成签到,获得积分10
刚刚
刚刚
香蕉觅云应助YUMI采纳,获得10
刚刚
水怪啊完成签到,获得积分10
2秒前
小米完成签到,获得积分10
3秒前
杨德凯完成签到,获得积分10
3秒前
4秒前
喈喈青鸟完成签到,获得积分10
6秒前
MoLing发布了新的文献求助10
6秒前
7秒前
Owen应助大气小土豆采纳,获得10
7秒前
8秒前
8秒前
香蕉觅云应助GKING采纳,获得10
8秒前
8秒前
9秒前
10秒前
上官若男应助愿景采纳,获得10
10秒前
七月流火给dawnfrf的求助进行了留言
11秒前
达分歧完成签到,获得积分10
11秒前
木可完成签到 ,获得积分10
11秒前
情怀应助王羲之采纳,获得10
11秒前
愉快若剑发布了新的文献求助150
12秒前
12秒前
YUMI发布了新的文献求助10
13秒前
13秒前
杨鑫怡发布了新的文献求助10
13秒前
14秒前
14秒前
扬帆远航完成签到 ,获得积分10
15秒前
深情安青应助闪闪万言采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
一一应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548