亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions

计算机科学 成对比较 任务(项目管理) 代表(政治) 编码器 节点(物理) 图形 钥匙(锁) 机器学习 人工智能 特征学习 理论计算机科学 结构工程 政治 操作系统 政治学 工程类 经济 管理 法学 计算机安全
作者
Xiaorui Su,Lun Hu,Zhu‐Hong You,Pengwei Hu,Bo-Wei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:70
标识
DOI:10.1093/bib/bbac140
摘要

Abstract Drug–drug interactions (DDIs) are known as the main cause of life-threatening adverse events, and their identification is a key task in drug development. Existing computational algorithms mainly solve this problem by using advanced representation learning techniques. Though effective, few of them are capable of performing their tasks on biomedical knowledge graphs (KGs) that provide more detailed information about drug attributes and drug-related triple facts. In this work, an attention-based KG representation learning framework, namely DDKG, is proposed to fully utilize the information of KGs for improved performance of DDI prediction. In particular, DDKG first initializes the representations of drugs with their embeddings derived from drug attributes with an encoder–decoder layer, and then learns the representations of drugs by recursively propagating and aggregating first-order neighboring information along top-ranked network paths determined by neighboring node embeddings and triple facts. Last, DDKG estimates the probability of being interacting for pairwise drugs with their representations in an end-to-end manner. To evaluate the effectiveness of DDKG, extensive experiments have been conducted on two practical datasets with different sizes, and the results demonstrate that DDKG is superior to state-of-the-art algorithms on the DDI prediction task in terms of different evaluation metrics across all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫灰狼发布了新的文献求助10
3秒前
5秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
12秒前
16秒前
多乐多发布了新的文献求助10
19秒前
57秒前
比格大王完成签到,获得积分10
57秒前
1分钟前
tongtong12345发布了新的文献求助40
1分钟前
1分钟前
冷静尔芙发布了新的文献求助10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
1分钟前
今后应助求求好心人采纳,获得10
1分钟前
潇洒诗槐完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
潇洒诗槐发布了新的文献求助10
1分钟前
温暖的乐蓉完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
长尾巴的人类完成签到,获得积分10
2分钟前
2分钟前
ada发布了新的文献求助10
2分钟前
比格大王发布了新的文献求助20
2分钟前
所所应助郭楠楠采纳,获得10
3分钟前
Lucas应助郭楠楠采纳,获得10
3分钟前
Hello应助郭楠楠采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
共享精神应助潇洒诗槐采纳,获得10
3分钟前
3分钟前
3分钟前
初晴完成签到 ,获得积分10
3分钟前
潇洒诗槐发布了新的文献求助10
3分钟前
SciGPT应助Developing_human采纳,获得10
3分钟前
万能图书馆应助ada采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359