Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions

计算机科学 成对比较 任务(项目管理) 代表(政治) 编码器 节点(物理) 图形 钥匙(锁) 机器学习 人工智能 特征学习 理论计算机科学 结构工程 政治 操作系统 政治学 工程类 经济 管理 法学 计算机安全
作者
Xiaorui Su,Lun Hu,Zhu‐Hong You,Pengwei Hu,Bo-Wei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:70
标识
DOI:10.1093/bib/bbac140
摘要

Abstract Drug–drug interactions (DDIs) are known as the main cause of life-threatening adverse events, and their identification is a key task in drug development. Existing computational algorithms mainly solve this problem by using advanced representation learning techniques. Though effective, few of them are capable of performing their tasks on biomedical knowledge graphs (KGs) that provide more detailed information about drug attributes and drug-related triple facts. In this work, an attention-based KG representation learning framework, namely DDKG, is proposed to fully utilize the information of KGs for improved performance of DDI prediction. In particular, DDKG first initializes the representations of drugs with their embeddings derived from drug attributes with an encoder–decoder layer, and then learns the representations of drugs by recursively propagating and aggregating first-order neighboring information along top-ranked network paths determined by neighboring node embeddings and triple facts. Last, DDKG estimates the probability of being interacting for pairwise drugs with their representations in an end-to-end manner. To evaluate the effectiveness of DDKG, extensive experiments have been conducted on two practical datasets with different sizes, and the results demonstrate that DDKG is superior to state-of-the-art algorithms on the DDI prediction task in terms of different evaluation metrics across all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助louis采纳,获得10
刚刚
Mrsummer发布了新的文献求助10
刚刚
林煜昕发布了新的文献求助50
1秒前
1秒前
大模型应助陌上无人扰采纳,获得10
1秒前
1秒前
青山道友发布了新的文献求助10
2秒前
2秒前
2秒前
Dxy-TOFA完成签到,获得积分10
2秒前
暗中讨饭发布了新的文献求助10
2秒前
费费发布了新的文献求助10
3秒前
AD应助SYX采纳,获得10
3秒前
3秒前
笑寒发布了新的文献求助10
3秒前
Thinkol发布了新的文献求助10
3秒前
3秒前
南极以南发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
坦率铅笔发布了新的文献求助10
5秒前
果粒橙980完成签到,获得积分10
5秒前
5秒前
郑麻发布了新的文献求助10
5秒前
5秒前
6秒前
yaaaaajie完成签到,获得积分10
6秒前
6秒前
田様应助血小板采纳,获得10
7秒前
难道我是西谷西完成签到,获得积分10
7秒前
8秒前
李梦想完成签到,获得积分10
8秒前
8秒前
8秒前
所所应助Mrsummer采纳,获得10
8秒前
韩soso发布了新的文献求助10
9秒前
陶嘉静发布了新的文献求助10
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588071
求助须知:如何正确求助?哪些是违规求助? 4671128
关于积分的说明 14785936
捐赠科研通 4624341
什么是DOI,文献DOI怎么找? 2531566
邀请新用户注册赠送积分活动 1500214
关于科研通互助平台的介绍 1468207