Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions

计算机科学 成对比较 任务(项目管理) 代表(政治) 编码器 节点(物理) 图形 钥匙(锁) 机器学习 人工智能 特征学习 理论计算机科学 结构工程 政治 操作系统 政治学 工程类 经济 管理 法学 计算机安全
作者
Xiaorui Su,Lun Hu,Zhu‐Hong You,Pengwei Hu,Bo-Wei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:70
标识
DOI:10.1093/bib/bbac140
摘要

Abstract Drug–drug interactions (DDIs) are known as the main cause of life-threatening adverse events, and their identification is a key task in drug development. Existing computational algorithms mainly solve this problem by using advanced representation learning techniques. Though effective, few of them are capable of performing their tasks on biomedical knowledge graphs (KGs) that provide more detailed information about drug attributes and drug-related triple facts. In this work, an attention-based KG representation learning framework, namely DDKG, is proposed to fully utilize the information of KGs for improved performance of DDI prediction. In particular, DDKG first initializes the representations of drugs with their embeddings derived from drug attributes with an encoder–decoder layer, and then learns the representations of drugs by recursively propagating and aggregating first-order neighboring information along top-ranked network paths determined by neighboring node embeddings and triple facts. Last, DDKG estimates the probability of being interacting for pairwise drugs with their representations in an end-to-end manner. To evaluate the effectiveness of DDKG, extensive experiments have been conducted on two practical datasets with different sizes, and the results demonstrate that DDKG is superior to state-of-the-art algorithms on the DDI prediction task in terms of different evaluation metrics across all datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助不散的和弦采纳,获得10
1秒前
吕士晋完成签到,获得积分20
2秒前
3秒前
烟花应助简单的冬灵采纳,获得10
4秒前
解丽发布了新的文献求助10
4秒前
blur完成签到,获得积分10
6秒前
石奥绅完成签到,获得积分20
6秒前
bkagyin应助yyy采纳,获得10
7秒前
852应助JLLLLLLLL采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Swii完成签到,获得积分10
10秒前
曹毅凯完成签到,获得积分10
10秒前
11秒前
zrl完成签到,获得积分20
11秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
12秒前
哈哈完成签到 ,获得积分10
12秒前
13秒前
研友_Z6k5Q8完成签到 ,获得积分10
14秒前
zjy发布了新的文献求助10
15秒前
15秒前
15秒前
Inuit发布了新的文献求助10
16秒前
16秒前
17秒前
bkagyin应助WangYZ采纳,获得10
18秒前
自然的方盒完成签到,获得积分20
18秒前
Joni发布了新的文献求助10
18秒前
19秒前
yyy发布了新的文献求助10
19秒前
拉总发布了新的文献求助30
19秒前
19秒前
科学家发布了新的文献求助10
19秒前
20秒前
闪闪乘风发布了新的文献求助10
21秒前
小紫完成签到 ,获得积分10
21秒前
科研通AI6应助lyy采纳,获得10
21秒前
22秒前
Lonnie完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858