Extensions to the Navier–Stokes equations

物理 经典力学 纳维-斯托克斯方程组 洛伦兹变换 参考坐标系 惯性参考系 参照系 马赫数 数学分析 机械 数学 帧(网络) 电信 计算机科学 压缩性
作者
Shisheng Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:15
标识
DOI:10.1063/5.0087550
摘要

Historically, the mass conservation and the classical Navier–Stokes equations were derived in the co-moving reference frame. It is shown that the mass conservation and Navier–Stokes equations are Galilean invariant—they are valid in any arbitrary inertial reference frame. From the mass conservation and Navier–Stokes equations, we can derive a wave equation, which contains the speed of pressure wave as its parameter. This parameter is independent of the speed of the source—the fluid element velocity. The speed of pressure wave is determined from the thermodynamic equation of state of the fluid, which is reference frame independent. It is well known that Lorentz transformation ensures wave speed invariant in all inertial frames, and the Lorentz invariance holds for different inertial observers. Based on these arguments, general Navier–Stokes equations (conservation law for the energy–momentum) can be written in any arbitrary inertial reference frame, they are transformed from one reference frame into another with the help of the Lorentz transformation. The key issue is that the Lorentz factor is parametrized by the local Mach number. In the instantaneous co-moving reference frame, these equations will degrade to the classical Navier–Stokes equations—the limit of the non-relativistic ones. These extended equations contain a square of the Lorentz factor. When the local Mach number is equal to one (the Lorentz factor approaches infinity), the extended Navier–Stokes equations will embody an intrinsic singularity, meaning that the transitions from the subsonic flow to the supersonic flow will happen. For the subsonic flow, the square of the Lorentz factor is positive, while for the supersonic flow, the square of the Lorentz factor becomes a negative number, which represents that the speed of sound cannot travel upstream faster than the flow velocity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YML完成签到,获得积分10
1秒前
荣安安完成签到,获得积分10
1秒前
啦某某完成签到,获得积分10
1秒前
sunzhiyu233发布了新的文献求助10
2秒前
zhenzhen发布了新的文献求助10
2秒前
fang发布了新的文献求助10
2秒前
chengyulin完成签到 ,获得积分10
2秒前
孙二二发布了新的文献求助10
2秒前
小二郎应助SY采纳,获得10
3秒前
Akim应助顺心的惜蕊采纳,获得10
4秒前
4秒前
berry完成签到,获得积分20
5秒前
康小郁完成签到,获得积分10
5秒前
快乐友灵完成签到,获得积分10
5秒前
6秒前
群木成林完成签到,获得积分10
6秒前
小白一号完成签到 ,获得积分10
6秒前
Cynthia完成签到 ,获得积分10
6秒前
李惊鸿完成签到,获得积分10
6秒前
6秒前
6秒前
愤怒的子骞完成签到,获得积分10
7秒前
Emilia完成签到,获得积分10
8秒前
9秒前
烩面大师发布了新的文献求助10
9秒前
鲍binyu完成签到,获得积分10
10秒前
Hello应助猪猪hero采纳,获得10
10秒前
今后应助xiuxiu_27采纳,获得10
11秒前
11秒前
jjy发布了新的文献求助10
11秒前
11秒前
在人类完成签到,获得积分10
11秒前
哈雷彗星完成签到,获得积分10
11秒前
系统提示发布了新的文献求助10
11秒前
luca驳回了Orange应助
12秒前
孙二二完成签到,获得积分10
12秒前
迷人圣诞树很闲完成签到,获得积分10
12秒前
优秀的修洁完成签到 ,获得积分10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759