Extensions to the Navier–Stokes equations

物理 经典力学 纳维-斯托克斯方程组 洛伦兹变换 参考坐标系 惯性参考系 参照系 马赫数 数学分析 机械 数学 帧(网络) 电信 计算机科学 压缩性
作者
Shisheng Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:15
标识
DOI:10.1063/5.0087550
摘要

Historically, the mass conservation and the classical Navier–Stokes equations were derived in the co-moving reference frame. It is shown that the mass conservation and Navier–Stokes equations are Galilean invariant—they are valid in any arbitrary inertial reference frame. From the mass conservation and Navier–Stokes equations, we can derive a wave equation, which contains the speed of pressure wave as its parameter. This parameter is independent of the speed of the source—the fluid element velocity. The speed of pressure wave is determined from the thermodynamic equation of state of the fluid, which is reference frame independent. It is well known that Lorentz transformation ensures wave speed invariant in all inertial frames, and the Lorentz invariance holds for different inertial observers. Based on these arguments, general Navier–Stokes equations (conservation law for the energy–momentum) can be written in any arbitrary inertial reference frame, they are transformed from one reference frame into another with the help of the Lorentz transformation. The key issue is that the Lorentz factor is parametrized by the local Mach number. In the instantaneous co-moving reference frame, these equations will degrade to the classical Navier–Stokes equations—the limit of the non-relativistic ones. These extended equations contain a square of the Lorentz factor. When the local Mach number is equal to one (the Lorentz factor approaches infinity), the extended Navier–Stokes equations will embody an intrinsic singularity, meaning that the transitions from the subsonic flow to the supersonic flow will happen. For the subsonic flow, the square of the Lorentz factor is positive, while for the supersonic flow, the square of the Lorentz factor becomes a negative number, which represents that the speed of sound cannot travel upstream faster than the flow velocity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxy999完成签到,获得积分10
1秒前
俊逸书琴完成签到 ,获得积分10
1秒前
桐桐应助大山采纳,获得30
1秒前
可爱的函函应助DavidWebb采纳,获得10
1秒前
向上先生完成签到,获得积分10
2秒前
都是应助露露采纳,获得20
2秒前
斯文败类应助轻歌水越采纳,获得10
2秒前
2秒前
3秒前
Roach完成签到,获得积分10
3秒前
pan完成签到,获得积分10
3秒前
simple发布了新的文献求助10
3秒前
hh完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助西北望采纳,获得10
4秒前
ZYC007完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助apple采纳,获得10
5秒前
cccc完成签到,获得积分10
5秒前
5秒前
springkaka完成签到,获得积分0
6秒前
shy完成签到,获得积分10
6秒前
相爱就永远在一起完成签到,获得积分10
7秒前
李若风完成签到,获得积分10
7秒前
HH完成签到,获得积分10
7秒前
枣核儿完成签到,获得积分10
8秒前
GGbong完成签到 ,获得积分10
8秒前
万能图书馆应助威武的捕采纳,获得10
9秒前
复杂小海豚应助威武的捕采纳,获得10
9秒前
李博士发布了新的文献求助30
9秒前
司徒涟妖完成签到,获得积分10
10秒前
Kay76完成签到,获得积分10
10秒前
CCC完成签到 ,获得积分10
11秒前
疯狂的碧凡完成签到,获得积分10
11秒前
王一博完成签到,获得积分10
12秒前
彭鱼晏发布了新的文献求助30
12秒前
lucia5354完成签到,获得积分10
12秒前
15秒前
15秒前
别先生完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565