Aging significantly increases the interaction between polystyrene nanoplastic and minerals

吸附 针铁矿 粘土矿物 化学 磁铁矿 高岭石 蒙脱石 傅里叶变换红外光谱 红外光谱学 化学工程 材料科学 矿物学 冶金 有机化学 工程类
作者
Yangyang Zhang,Yuanyuan Luo,Xiaoqin Yu,Daofen Huang,Xuetao Guo,Lingyan Zhu
出处
期刊:Water Research [Elsevier BV]
卷期号:219: 118544-118544 被引量:76
标识
DOI:10.1016/j.watres.2022.118544
摘要

With the massive use and discarding of plastic products, plastic particles, including nanoplastics (NPs), which are continuously released under the action of environmental factors, are posing greater risk to the ecosystem and human health. NPs exposed to the environment experience aging, which can significantly change their physical and chemical properties and affect their environmental behavior. Here, we examined the adsorption behavior of polystyrene nanoplastic (PSNP) aging by ultraviolet (UV) exposure on different minerals (goethite, magnetite, kaolinite and montmorillonite). Aging not only changes the surface morphology of PSNP, but also increases the surface negative charge and produces a large number of oxygen-containing functional groups (OFGs). Incubation of aged PSNP with minerals indicated that iron oxides (goethite and magnetite) showed stronger interactions with aged PSNP than pristine PSNP, and there was an interaction between clay minerals and aged PSNP. The adsorption experiments and scanning electron microscopy (SEM) suggested that the higher adsorption capacity of a mineral surface to aged PSNP may be related to electrostatic attraction and ligand exchange. The Fourier transform infrared (FTIR) spectra after adsorption showed that the adsorption affinity between the functional groups was different, and two-dimensional correlation spectroscopy (2D-COS) analysis further indicated that the mineral preferentially adsorbed the aged PSNP in accordance with the order of OFGs. The findings provide a theoretical basis for scientific evaluation of ecological risks of NPs in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助可爱的飞瑶采纳,获得10
1秒前
2秒前
Dream_fai发布了新的文献求助10
2秒前
吃饭了完成签到,获得积分10
3秒前
星星完成签到 ,获得积分10
3秒前
落后尔白完成签到,获得积分10
3秒前
3秒前
3秒前
麻黄汤中用桂枝完成签到 ,获得积分10
4秒前
4秒前
4秒前
小精灵发布了新的文献求助10
5秒前
5秒前
111发布了新的文献求助10
5秒前
6秒前
kyttytk完成签到,获得积分10
7秒前
聆听发布了新的文献求助10
8秒前
8秒前
万能图书馆应助永力采纳,获得10
9秒前
SYLH应助清脆的夜白采纳,获得20
9秒前
科目三应助liu采纳,获得10
9秒前
CodeCraft应助龙龙采纳,获得10
9秒前
斯文败类应助段段采纳,获得10
9秒前
专注的猫咪完成签到,获得积分10
10秒前
yumb发布了新的文献求助10
10秒前
10秒前
Jasper应助Souliko采纳,获得20
11秒前
Lucas应助风中的蒲公英采纳,获得10
11秒前
12秒前
李爱国应助lee采纳,获得10
12秒前
12秒前
12秒前
giao快查应助没所谓采纳,获得10
13秒前
织诗成锦发布了新的文献求助10
13秒前
外向语堂完成签到,获得积分10
14秒前
14秒前
AHR发布了新的文献求助30
14秒前
李健应助丰富的晓亦采纳,获得10
15秒前
16秒前
单薄芹发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756235
求助须知:如何正确求助?哪些是违规求助? 3299479
关于积分的说明 10110271
捐赠科研通 3013987
什么是DOI,文献DOI怎么找? 1655375
邀请新用户注册赠送积分活动 789739
科研通“疑难数据库(出版商)”最低求助积分说明 753429